

for unstable and stable detonations, and deflagrations in right angle design with a shock absorber, uni-directional

**PROTEGO® DR/EU** 



Connection to the protected side

#### **Function and Description**

The PROTEGO® DR/EU series of in-line detonation flame arresters represents further development of PROTEGO® flame arrester series DR/ES, which has been successfully used in industry for decades.

The device protects against deflagrations and stable and unstable detonations. The classic right-angle design offers considerable costs and maintenance advantages over the straight-through design.

Once a detonation enters the flame arrester, energy is absorbed from the detonation shock wave by the integrated shock absorber (1) before the flame is extinguished in the narrow gaps of the FLAMEFILTER® (3).

The PROTEGO® flame arrester unit (2) consists of several FLAMEFILTER® discs and spacers firmly held in the FLAMEFILTER® casing (4). The gap size and number of FLAMEFILTER® discs are by the operating conditions of the flowing mixture (explosion group, pressure, temperature). This device is can be used for explosion groups from IIA to IIB3 (NEC group D to C MESG  $\geq$  0.65 mm).

The standard design can be used with an operating temperature of up to +60°C / 140°F and an absolute operating pressure acc. to table 3. Devices with special approval for higher pressures and temperatures are available upon request.

Type-approved in accordance with the current ATEX Directive and EN ISO 16852, as well as other international standards.

#### **Special Features and Advantages**

- low number of FLAMEFILTER<sup>®</sup> discs due to shock absorber technology
- quick removal and installation of the complete PROTEGO<sup>®</sup> flame arrester and the individual FLAMEFILTER® in the casing
- · modular design enables replacement of the individual FLAMEFILTER<sup>®</sup> discs
- provides protection against deflagrations and stable and unstable detonations
- · right-angle design eliminates need for pipe elbows
- · advanced design for higher operating temperatures and pressures
- · low pressure loss results in low operating and lifecycle costs
- · cost-effective spare part

#### **Design Types and Specifications**

There are four different designs available:

| Basic in-line detonation flame arrester                                                                                            | DR/EU- – –   |
|------------------------------------------------------------------------------------------------------------------------------------|--------------|
| In-line detonation flame arrester with<br>integrated temperature sensor* as<br>additional protection against short-time<br>burning | DR/EU- T –   |
| In-line detonation flame arrester with heating jacket                                                                              | DR/EU-H –    |
| in-line detonation flame arrester with<br>integrated temperature sensor* and<br>heating jacket                                     | DR/EU- H - T |

\*Resistance thermometer for device group II, category (1) 2 (GII cat. (1) 2)





Stabilized FLAMEFILTER<sup>®</sup> Discs (Flyer pdf)

| Table  | Table 1: Dimensions         Dimensions in mm / inches                                        |           |           |           |           |           |           |           |           |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|--|
| To sel | To select the nominal size (DN), please use the flow capacity charts on the following pages. |           |           |           |           |           |           |           |           |  |  |  |  |
| DN     | 25 / 1"                                                                                      | 100 / 4"  | 125 / 5"  | 150 / 6"  |           |           |           |           |           |  |  |  |  |
| а      | 125/4.92                                                                                     | 125/4.92  | 153/6.02  | 155/6.10  | 198/7.80  | 200/7.87  | 250/9.84  | 332/13.07 | 335/13.19 |  |  |  |  |
| b      | 140/5.51                                                                                     | 140/5.51  | 183/7.20  | 185/7.28  | 223/8.78  | 225/8.86  | 290/11.42 | 357/14.06 | 360/14.17 |  |  |  |  |
| с      | 210/8.27                                                                                     | 210/8.27  | 290/11.42 | 290/11.42 | 365/14.37 | 365/14.37 | 440/17.32 | 535/21.06 | 535/21.06 |  |  |  |  |
| c1     | 285/11.22                                                                                    | 285/11.22 | 395/15.55 | 395/15.55 | 500/19.69 | 500/19.69 | 595/23.43 | 750/29.53 | 750/29.53 |  |  |  |  |
| d      | 150/5.91                                                                                     | 150/5.91  | 210/8.27  | 210/8.27  | 275/10.83 | 275/10.83 | 325/12.80 | 460/18.11 | 460/18.11 |  |  |  |  |
| е      | 495/19.49                                                                                    | 495/19.49 | 600/23.62 | 600/23.62 | 705/27.76 | 705/27.76 | 795/31.30 | 950/37.40 | 950/37.40 |  |  |  |  |

| Table 2: Selection of the explosion group |                     |                 |                                 |  |  |  |  |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|---------------------------------|--|--|--|--|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) |                                 |  |  |  |  |  |  |  |  |
| > 0,90 mm                                 | IIA                 | D               | Special approvals upon request  |  |  |  |  |  |  |  |  |
| ≥ 0,75 mm                                 | IIB2                | С               | Special approvais upon request. |  |  |  |  |  |  |  |  |
| ≥ 0,65 mm                                 | IIB3                | С               |                                 |  |  |  |  |  |  |  |  |

| Tab     | Table 3: Selection of max. operating pressure |                  |            |             |             |            |            |            |            |             |             |  |  |
|---------|-----------------------------------------------|------------------|------------|-------------|-------------|------------|------------|------------|------------|-------------|-------------|--|--|
|         |                                               | DN               | 25 / 1"    | 32 / 1 1⁄4" | 40 / 1 1⁄2" | 50 / 2"    | 65 / 2 ½"  | 80 / 3"    | 100 / 4"   | 125 / 5"    | 150 / 6"    |  |  |
| pl. Gr. | IIA                                           | P <sub>max</sub> | 1.6 / 23.2 | 1.6 / 23.2  | 1.6 / 23.2  | 1.6 / 23.2 | 1.6 / 23.2 | 1.6 / 23.2 | 1.5 / 21.7 | 1.2 / 17.4  | 1.2 / 17.4  |  |  |
|         | IIB2                                          | P <sub>max</sub> |            |             |             |            |            |            |            | 1.4 / 20.3  | 1.4 / 20.3  |  |  |
| ш       | IIB3                                          | P <sub>max</sub> | 1.6 / 23.2 | 1.6 / 23.2  | 1.6 / 23.2  | 1.6 / 23.2 | 1.6 / 23.2 | 1.6 / 23.2 | 1.4 / 20.3 | 1.2 / 17.4* | 1.2 / 17.4* |  |  |

P<sub>max</sub> = maximum allowable operating pressure in bar / psi (absolute); higher operating pressure upon request. \* special flame arrester unit

| Fable 4: Specification of max. operating temperature |                                                |                                             |  |  |  |  |  |  |  |
|------------------------------------------------------|------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|
| ≤ 60°C / 140°F                                       | Tmaximum allowable operating temperature in °C | Higher exercting temperatures upon request  |  |  |  |  |  |  |  |
| -                                                    | Classification                                 | nigher operating temperatures upon request. |  |  |  |  |  |  |  |

| Table 5: Material selection for housing |                       |                                    |                              |                                                             |  |  |  |  |  |  |  |
|-----------------------------------------|-----------------------|------------------------------------|------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|--|
| Design                                  | В                     | С                                  | D                            | *For devices exposed to elevated                            |  |  |  |  |  |  |  |
| Housing<br>Heating jacket (DR/EU-H-(T)) | Carbon Steel<br>Steel | Stainless Steel<br>Stainless Steel | Hastelloy<br>Stainless Steel | temperatures above 150°C / 302°F, gaskets are made of PTFE. |  |  |  |  |  |  |  |
| Cover with shock absorber               | Steel                 | Stainless Steel                    | Hastelloy                    | The housing and cover with the                              |  |  |  |  |  |  |  |
| O-Ring                                  | FPM *                 | PTFE                               | PTFE                         | shock absorber can also be deliv-                           |  |  |  |  |  |  |  |
| Flame arrester unit                     | А                     | C, D                               | E                            | ered in steel with an ECTFE coating.                        |  |  |  |  |  |  |  |

Special materials upon request.

| Table 6: Material combinations of the flame arrester unit |                 |                 |                 |           |                                  |  |  |  |  |  |  |
|-----------------------------------------------------------|-----------------|-----------------|-----------------|-----------|----------------------------------|--|--|--|--|--|--|
| Design                                                    | A               | С               | D               | E         | *The FLAMEFILTER® is also        |  |  |  |  |  |  |
| FLAMEFILTER <sup>®</sup> casing                           | Steel           | Stainless Steel | Stainless Steel | Hastelloy | available in Tantalum, Inconel,  |  |  |  |  |  |  |
| FLAMEFILTER® *                                            | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy | housing and casing materials are |  |  |  |  |  |  |
| Spacer                                                    | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy | used.                            |  |  |  |  |  |  |
| Special motorials upon rec                                |                 |                 |                 |           |                                  |  |  |  |  |  |  |

Special materials upon request.

#### Table 7: Flange connection type

EN 1092-1; Form B1

ASME B16.5 CL 150 R.F.

Other types upon request.







Flow Capacity Charts

## PROTEGO® DR/EU



#### P\* see table 3





The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."



for unstable and stable detonations, and deflagrations in a straight-through design with shock absorber, bi-directional



## PROTEGO<sup>®</sup> DA-CG



#### **Function and Description**

The PROTEGO<sup>®</sup> DA-CG series of detonation arresters was mainly developed for the North American market and optimized to meet the demands of the US Coast Guard. The devices are symmetrical and offer bi-directional flame arresting for deflagrations and stable and unstable detonations.

The effective shock absorber (1) greatly reduces the speed of incoming detonations. This leads to improved flame extinguishing in the narrow gaps of the FLAMEFILTER<sup>®</sup> (3).

The flame arrester essentially consists of two housing parts with an integrated shock absorber and the PROTEGO<sup>®</sup> flame arrester unit (2) in the center. The PROTEGO<sup>®</sup> flame arrester unit is modular and consists of several FLAMEFILTER<sup>®</sup> discs and spacers firmly held in a FLAMEFILTER<sup>®</sup> casing. The number of FLAMEFILTER<sup>®</sup> discs and their gap size depends on the arrester's intended use.

By specifying the operating conditions, such as the temperature, pressure, explosion group, and the composition of the fluid, the optimum in-line detonation flame arrester can be selected. Type PROTEGO<sup>®</sup> DA-CG flame arresters are available for explosion groups IIA to IIB3 (NEC group D to C MESG  $\geq$  0.65 mm).

The standard design can be used at an operating temperature of up to  $+60^{\circ}$ C /  $140^{\circ}$ F and an absolute operating pressure acc. to table 3. **Devices with special approvals for higher pressures and higher temperatures are available upon request.** 

The flame arresters have been approved in accordance with the American Standard 33 CFR part 154 and are accepted by the US Coast Guard.

#### **Special Features and Advantages**

- provides protection against deflagrations and stable and unstable detonations
- low number of FLAMEFILTER<sup>®</sup> discs due to shock absorber technology
- modular design enables individual cleaning and replacement of the FLAMEFILTER<sup>®</sup> discs
- different design allow scalable pressure loss over the area of the FLAMEFILTER<sup>®</sup>
- · maintenance-friendly design
- · available in large nominal widths
- advanced design for higher operating temperatures and pressures
- bi-directional operation, as well as any flow direction and installation position
- installation of temperature sensors possible
- minimal pressure loss resulting in low operating and lifecycle costs
- · cost-effective spare parts

#### **Design Types and Specifications**

There are three different designs available:

Basic in-line detonation flame arrester **DA-CG-**

In-line detonation flame arrester with integrated temperature sensor\* as additional protection against short-time burning from one side

Detonation arrester with two integrated temperature sensors\* as additional protection against short-time burning from both sides

Additional special flame arresters upon request.

\*Resistance thermometer for device group II, category (1) 2 (GII cat. (1) 2)

| DA-CG- | - |
|--------|---|
| DA-CG- | Т |



| Table 1           | Table 1: Dimensions         Dimensions in mm / inches |                           |                              |                             |                          |                     |                                                                                                       |              |                 |                 |                 |  |
|-------------------|-------------------------------------------------------|---------------------------|------------------------------|-----------------------------|--------------------------|---------------------|-------------------------------------------------------------------------------------------------------|--------------|-----------------|-----------------|-----------------|--|
| To sele<br>please | ct nominal<br>use the flo                             | l width/nor<br>ow capacit | minal size (l<br>y charts on | NG/DN) - co<br>the followir | ombination,<br>ng pages. | Additior<br>for imp | Additional nominal width/nominal size (NG/DN) - combinations for improved flow capacity upon request. |              |                 |                 |                 |  |
| standar           | ď                                                     |                           |                              |                             |                          |                     |                                                                                                       |              |                 |                 |                 |  |
| NG                | 150<br>6"                                             | 150<br>6"                 | 200<br>8"                    | 300<br>12"                  | 400<br>16"               | 500<br>20"          | 600<br>24"                                                                                            | 700<br>28"   | 800<br>32"      | 1000<br>40"     | 1200<br>48"     |  |
| DN                | ≤ 50<br>2"                                            | 80<br>3"                  | ≤ 100<br>4"                  | ≤ 150<br>6"                 | ≤ 200<br>8"              | ≤ 250<br>10"        | ≤ 300<br>12"                                                                                          | ≤ 350<br>14" | ≤ 400<br>16"    | ≤ 500<br>20"    | ≤ 600<br>24"    |  |
| а                 | 285 /<br>11.22                                        | 285 /<br>11.22            | 340 /<br>13.39               | 460 /<br>18.11              | 580 /<br>22.83           | 715 /<br>28.15      | 840 /<br>33.07                                                                                        |              | 1025 /<br>40.35 | 1255 /<br>49.41 | 1485 /<br>58.46 |  |
| b (D)             | 594 /<br>23.39                                        | 570 /<br>22.44            | 620 /<br>24.41               | 720 /<br>28.35              | 852 /<br>33.54           | 1052 /<br>41.42     | 1202 /<br>47.32                                                                                       |              | 1500 /<br>59.06 | 1700 /<br>66.93 | 2000 /<br>78.74 |  |
| b (C)             | 650 /<br>25.59                                        | 650 /<br>25.59            | 700 /<br>27.56               | 800 /<br>31.50              | 900 /<br>35.43           | 1100 /<br>43.31     | 1250 /<br>49.21                                                                                       |              | 1548 /<br>60.94 | -               | -               |  |
| с                 | 300 /<br>11.81                                        | 300 /<br>11.81            | 330 /<br>12.99               | 380 /<br>14.96              | 490 /<br>19.29           | 540 /<br>21.26      | 590 /<br>23.23                                                                                        |              | 690 /<br>27.17  | 790 /<br>31.10  | 880 /<br>34.65  |  |

| Table 2: Selection of the explosion group |                     |                 |                                 |  |  |  |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|---------------------------------|--|--|--|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) |                                 |  |  |  |  |  |  |  |
| > 0,90 mm                                 | IIA                 | D               | Special approvals upon request. |  |  |  |  |  |  |  |
| ≥ 0,65 mm                                 | IIB3                | С               |                                 |  |  |  |  |  |  |  |

| Та       | Table 3: Selection of max. operating pressure |                  |               |               |               |               |               |               |               |               |                |               |               |
|----------|-----------------------------------------------|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|
|          |                                               | NG               | 150<br>6"     | 150<br>6"     | 200<br>8"     | 300<br>12"    | 400<br>16"    | 500<br>20"    | 600<br>24"    | 700<br>28"    | 800<br>32"     | 1000<br>40"   | 1200<br>48"   |
|          |                                               | DN               | ≤ 50<br>2"    | 80<br>3"      | ≤ 100<br>4"   | ≤ 150<br>6"   | ≤ 200<br>8"   | ≤ 250<br>10"  | ≤ 300<br>12"  | ≤ 350<br>14"  | ≤ 400<br>16"   | ≤ 500<br>20"  | ≤ 600<br>24"  |
| ي.<br>۲. | IIA                                           | P <sub>max</sub> | 1.2 /<br>17.4  | 1.2 /<br>17.4 | 1.2 /<br>17.4 |
| Expl.    | IIB3                                          | P <sub>max</sub> | 1.6 /<br>23.2 | 1.6 /<br>23.26 | 1.6 /<br>23.2 | 1.6 /<br>23.2 |

P<sub>max</sub> = maximum allowable operating pressure in bar / psi (absolute); higher operating pressure upon request.





for unstable and stable detonations and deflagrations in a straight through design with shock absorber, bi-directional

## **PROTEGO® DA-CG**

| Table 4: Specification of max. operating temperature |                                                |                                             |  |  |  |  |
|------------------------------------------------------|------------------------------------------------|---------------------------------------------|--|--|--|--|
| ≤ 60°C / 140°F                                       | Tmaximum allowable operating temperature in °C |                                             |  |  |  |  |
| -                                                    | Classification                                 | righer operating temperatures upon request. |  |  |  |  |

| Table 5: Material selection for housing |       |                 |                                 |  |  |  |
|-----------------------------------------|-------|-----------------|---------------------------------|--|--|--|
| Design                                  | А     | В               |                                 |  |  |  |
| Housing                                 | Steel | Stainless Steel | Chasiel materials upon request  |  |  |  |
| Gasket                                  | PTFE  | PTFE            | Special materials upon request. |  |  |  |
| Flame arrester unit                     | А     | В               |                                 |  |  |  |

| Table 6: Material combinations of the flame arrester unit |                            |                 |                                                              |  |  |  |  |  |  |
|-----------------------------------------------------------|----------------------------|-----------------|--------------------------------------------------------------|--|--|--|--|--|--|
| Design                                                    | А                          | В               |                                                              |  |  |  |  |  |  |
| FLAMEFILTER <sup>®</sup> casing                           | casing Steel Stainless Ste |                 | *The FLAMEFILTER <sup>®</sup> is also available in Tantalum, |  |  |  |  |  |  |
| FLAMEFILTER® *Stainless SteelSpacerStainless Steel        |                            | Stainless Steel | casing materials are used                                    |  |  |  |  |  |  |
|                                                           |                            | Stainless Steel |                                                              |  |  |  |  |  |  |
|                                                           |                            |                 |                                                              |  |  |  |  |  |  |

Special materials upon request.

| Table 7: Flange connection type |                            |  |
|---------------------------------|----------------------------|--|
| EN 1092-1; Form B1              | Other types when a succest |  |
| ASME B16.5 CL 150 R.F.          | Other types upon request.  |  |

**Flow Capacity Charts** 

## PROTEGO® DA-CG



The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."



for safety and environment

for unstable and stable detonations, and deflagrations in a straight-through design with a shock tube, bi-directional



PROTEGO<sup>®</sup> DA-UB



Connection to the protected side (only for type DA-UB-T-....)

#### **Function and Description**

The type PROTEGO<sup>®</sup> DA-UB in-line detonation flame arresters are the newest generation of flame arresters. Based on fluid dynamic and explosion-dynamic calculations, as well as decades of field tests, a line was developed that offers minimum pressure loss and maximum safety. The device uses the Shock Wave Guide Tube Effect (SWGTE) to separate the flame front and shock wave. The result is an in-line detonation flame arrester without a classic shock absorber, and the use of flame-extinguishing elements is minimized.

The devices are symmetrical and offer bi-directional flame arresting for deflagrations and stable and unstable detonations. The arrester essentially consists of two housing parts with an integrated shock tube (1) and the PROTEGO® flame arrester unit (2) in the center. The PROTEGO® flame arrester unit is modular and consists of several FLAMEFILTER® discs (3) and spacers firmly held in a FLAMEFILTER® casing. The number of FLAMEFILTER® discs and their gap size depends on the arrester's intended use.

By specifying the operating conditions, such as the temperature, pressure, explosion group, and the composition of the fluid, the optimum detonation arrester can be selected from a series of approved devices. PROTEGO<sup>®</sup> DA-UB flame arresters are available for explosion groups IIA to IIB3 (NEC group D to C MESG  $\geq$  0.65 mm).

The standard design can be used at an operating temperature of up to +60°C / 140°F and an absolute operating pressure up to 1.1 bar / 15.9 psi. **Devices with special approval for higher temperatures and pressures (see table 3) are available upon request.** Type-approved in accordance with the current ATEX Directive and EN ISO 16852, as well as other international standards.

#### **Special Features and Advantages**

- optimized performance due to the patented Shock Wave Guide Tube Effect (SWGTE)
- low number of FLAMEFILTER<sup>®</sup> discs due to the patented shock tube (SWGTE)
- modular design enables replacement of the individual FLAMEFILTER<sup>®</sup> discs
- different designs allow scalable pressure loss over the area of the FLAMEFILTER<sup>®</sup>
- · maintenance-friendly design
- advanced design for higher operating temperatures and pressures
- bi-directional operation, as well as any flow direction and installation position
- · installation of temperature sensors possible
- minimal pressure loss resulting in low operating and lifecycle costs
- · cost-effective spare parts

#### **Design Types and Specifications**

There are four different designs available:

| Basic in-line detonation flame arrester                                                                                                                  | DA-UB         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| In-line detonation flame arrester with<br>integrated temperature sensor* as<br>additional protection against short-time<br>burning                       | DA-UB - T     |
| In-line detonation flame arrester with two<br>integrated temperature sensors* for<br>additional protection against short-time<br>burning from both sides | DA-UB - H - 🗌 |
| In-line detonation flame arrester with heating jacket                                                                                                    |               |
| Additional special flame arresters upon reque                                                                                                            | st.           |

\*Resistance thermometer for device group II, category (1) 2 (GII cat. (1) 2)





New PROTEGO<sup>®</sup> Flame Arrester Unit unique maintenance friendly design (Flyer pdf)

#### Table 1: Dimensions

| Та                                                                                                                                                                                                                            | Table 1: Dimensions         Dimensions in mm / inches |                |                |                |                |                |                |                 |                 |                 |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|
| To select nominal width/nominal size (NG/DN) - combination, please use the flow capacity charts on the following pages. Additional nominal width/nominal size (NG/DN) - combinations for improved flow capacity upon request. |                                                       |                |                |                |                |                |                | binations       |                 |                 |                 |
| sta                                                                                                                                                                                                                           | andard                                                |                |                |                |                |                |                |                 |                 |                 |                 |
|                                                                                                                                                                                                                               | NG                                                    | 150<br>6"      | 150<br>6"      | 200<br>8"      | 300<br>12"     | 400<br>16"     | 500<br>20"     | 600<br>24"      | 700<br>28"      | 800<br>32"      | 1400<br>56"     |
|                                                                                                                                                                                                                               | DN                                                    | ≤ 50<br>2"     | 80<br>3"       | ≤ 100<br>4"    | ≤ 150<br>6"    | ≤ 200<br>8"    | ≤ 250<br>10"   | ≤ 300<br>12"    | ≤ 350<br>14"    | ≤ 400<br>16"    | ≤ 600<br>24"    |
|                                                                                                                                                                                                                               | а                                                     | 285 /<br>11.22 | 285 /<br>11.22 | 340 /<br>13.39 | 445 /<br>17.52 | 565 /<br>22.24 | 670 /<br>26.38 | 780 /<br>30.71  | 895 /<br>35.24  | 1015 /<br>39.96 | 1675 /<br>65.94 |
|                                                                                                                                                                                                                               | IIA -P1.1                                             |                |                |                |                | 700 /<br>27.56 | 800 /<br>31.50 | 1000 /<br>39.37 | 1200 /<br>47.24 | 1400 /<br>55.12 | 2200 /<br>86.61 |
| h                                                                                                                                                                                                                             | IIA-P1.2                                              | 388 /<br>15.28 | 388 /<br>15.28 | 488 /<br>19.21 | 626 /<br>24.65 |                |                |                 |                 |                 |                 |
| d                                                                                                                                                                                                                             | IIB3-P1.1                                             |                |                | 500 /<br>19.69 | 638 /<br>25.12 | 724 /<br>28.50 | 824 /<br>32.44 | 1000 /<br>39.37 | 1200 /<br>47.24 | 1400 /<br>55.12 |                 |
|                                                                                                                                                                                                                               | IIB3-P1.2                                             | 388 /<br>15.28 | 388 /<br>15.28 |                |                |                |                |                 |                 |                 |                 |
|                                                                                                                                                                                                                               | С                                                     | 500 /<br>19.69 | 500 /<br>19.69 | 520 /<br>20.47 | 570 /<br>22.44 | 620 /<br>24.41 | 670 /<br>26.38 | 720 /<br>28.35  | 770 /<br>30.31  | 820 /<br>32.28  | 1060 /<br>41.73 |

| Table 2: Selection of the explosion group |                     |                 |                                 |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|---------------------------------|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) |                                 |  |  |  |  |
| > 0,90 mm                                 | IIA                 | D               | Special approvals upon request. |  |  |  |  |
| ≥ 0,65 mm                                 | IIB3                | С               |                                 |  |  |  |  |

| Tal  | Table 3: Selection of max. operating pressure |                  |               |               |               |               |               |               |               |               |               |              |
|------|-----------------------------------------------|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|
|      |                                               | NG               | 150<br>6"     | 150<br>6"     | 200<br>8"     | 300<br>12"    | 400<br>16"    | 500<br>20"    | 600<br>24"    | 700<br>28"    | 800<br>32"    | 1400<br>56"  |
|      |                                               | DN               | ≤ 50<br>2"    | 80<br>3"      | ≤ 100<br>4"   | ≤ 150<br>6"   | ≤ 200<br>8"   | ≤ 250<br>10"  | ≤ 300<br>12"  | ≤ 350<br>14"  | ≤ 400<br>6"   | ≤ 600<br>24" |
| Gr.  | IIA                                           | P <sub>max</sub> | 1.8 /<br>26.1 | 1.8 /<br>26.1 | 1.6 /<br>23.2 | 1.6 /<br>23.2 | 1.1 /<br>15.9 | 1.6/<br>23.2 |
| Expl | IIB3                                          | P <sub>max</sub> | 1.5 /<br>21.7 | 1.5 /<br>21.7 | 1.5 /<br>21.7 | 1.5 /<br>21.7 | 1.1 /<br>15.9 |              |

P<sub>max</sub> = maximum allowable operating pressure in bar / psi (absolute); higher operating pressure upon request. In-between size up to  $\mathsf{P}_{\max}$  upon request.

| Table 4: Specification of max. operating temperature |                                                |                                            |  |  |  |  |
|------------------------------------------------------|------------------------------------------------|--------------------------------------------|--|--|--|--|
| ≤ 60°C / 140°F                                       | Tmaximum allowable operating temperature in °C | Ligher operating temperatures upon request |  |  |  |  |
| -                                                    | Classification                                 | Higher operating temperatures upon request |  |  |  |  |





for unstable and stable detonations, and deflagrations in a straight-through design with a shock tube, bi-directional

**PROTEGO® DA-UB** 

| Table 5: Material selection for housing |                                          |      |                              |                                        |  |  |  |
|-----------------------------------------|------------------------------------------|------|------------------------------|----------------------------------------|--|--|--|
| Design                                  | А                                        | В    | С                            |                                        |  |  |  |
| Housing<br>Heating jacket (DA-UB-(T)-H) | SteelStainless SteelSteelStainless Steel |      | Hastelloy<br>Stainless Steel | The housing is also available in Steel |  |  |  |
| Gasket                                  | PTFE                                     | PTFE | PTFE                         | with all ECTFE coating.                |  |  |  |
| Flame arrester unit                     | А                                        | B, C | D                            |                                        |  |  |  |

Special materials upon request.

| Table 6: Material combinations of the flame arrester unit |                 |                 |                 |           |                                       |  |  |  |  |
|-----------------------------------------------------------|-----------------|-----------------|-----------------|-----------|---------------------------------------|--|--|--|--|
| Design                                                    | А               | В               | С               | D         | *The FLAMEFILTER <sup>®</sup> is also |  |  |  |  |
| FLAMEFILTER <sup>®</sup> casing                           | Steel           | Stainless Steel | Stainless Steel | Hastelloy | available in Tantalum, Inconel,       |  |  |  |  |
| FLAMEFILTER® *                                            | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy | Copper, etc., when the listed housing |  |  |  |  |
| Spacer                                                    | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy | and casing materials are used.        |  |  |  |  |

Special materials upon request.

#### Table 7: Flange connection type

EN 1092-1; Form B1

ASME B16.5 CL 150 R.F.

Other types upon request.

**Flow Capacity Charts** 

## PROTEGO<sup>®</sup> DA-UB



The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."



for safety and environment

#### **Detonation Flame Arrester**



#### for tank ships and containers

## PROTEGO® BR/TS-80-IIB3



#### **Function and Description**

The PROTEGO® BR/TS-80-IIB3 detonation flame arrester was developed for protecting tankships but can also be used for containers. These devices are especially used on tank ships operating on inland waterways or coastal shipping. The device is installed on the tank or a pipe section connected to the tank with a nominal size of 250 mm / 10" and connected to the vapour balancing line (DN 80 / 3"). The individual tanks connected via the vapour balancing line are technically decoupled by the detonation arresters and protected.

The device protects against unidirectional detonation. In particular, the arrester consists of a shock absorber (1) and the PROTEGO<sup>®</sup> flame arrester unit (2). The PROTEGO<sup>®</sup> flame arrester unit consists of several FLAMEFILTER<sup>®</sup> discs (3) and spacers firmly held in a FLAMEFILTER<sup>®</sup> cage (4). It is moveable and can be folded to the side for maintenance. The primary goal of this design is to enable the tank to be vented or supplied with air in an emergency when ice or crystallizing products clog the FLAMEFILTER<sup>®</sup>. The PROTEGO<sup>®</sup> BR/TS flame arrester is available for explosion groups IIA to IIB3 (NEC group D and C MESG  $\geq$  0.65 mm).

| Table 1: Material selection for housing |           |                 |  |  |  |  |
|-----------------------------------------|-----------|-----------------|--|--|--|--|
| Design                                  | А         | В               |  |  |  |  |
| Housing                                 | Steel     | Stainless Steel |  |  |  |  |
| Cover                                   | Steel     | Stainless Steel |  |  |  |  |
| Gasket                                  | Tankatite | Tankatite       |  |  |  |  |
| Flame arrester unit                     | A         | A               |  |  |  |  |

## Table 3: Flange connection type

EN 1092-1; Form B1

ASME B16.5; 150 lbs RFSF

The standard design is approved up to an operating temperature of  $+60^{\circ}$ C /  $140^{\circ}$ F and an operating pressure up to 1.55 bar / 22.47 psi (absolute), and it meets all the conditions of the ADN\* for hazardous goods transport on European Inland Waterways.

Type-tests according to EN ISO 16852 and classification societies are available.

#### **Special Features and Advantages**

- meets all ADN\* requirements
- flat design
- the emergency venting with the flexibly mounted flame arrester enables use even in bad weather conditions as well as with contaminated products
- · extraordinarily easy to service
- the design of the PROTEGO<sup>®</sup> flame arrester unit enables individual FLAMEFILTER<sup>®</sup> discs to be replaced
- · we offer support in calculating loading and unloading rates
- · applicable for nearly all flammable liquids
- · may be used as maintenance and cleaning hatch
- · cost efficient spare parts
- \* European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

| Table 2: Material for flame arrester unit |                 |  |  |  |  |  |
|-------------------------------------------|-----------------|--|--|--|--|--|
| Design                                    | А               |  |  |  |  |  |
| FLAMEFILTER <sup>®</sup> cage             | Stainless Steel |  |  |  |  |  |
| FLAMEFILTER <sup>®</sup>                  | Stainless Steel |  |  |  |  |  |
| Spacer                                    | Stainless Steel |  |  |  |  |  |

other types upon request

## **In-Line Detonation Flame Arrester Flow Capacity Chart**

## PROTEGO® BR/TS-80-IIB3



The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow V in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".



for safety and environment

#### **Detonation Flame Arrester**



#### for tank ships and containers

## PROTEGO® BR/TS-80-IIB-P1.6



#### **Function and Description**

The PROTEGO® BR/TS-80-IIB-P1.6 detonation flame arrester was developed for protecting tankships but can also be used for containers. These devices are especially used on tank ships operating on inland waterways or coastal shipping. The device is installed on the tank or a pipe section connected to the tank with a nominal size of 250 mm / 10" and connected to the vapour balancing line (DN 80 / 3"). The individual tanks connected via the vapour balancing line are technically decoupled by the detonation arresters and protected.

The device protects against unidirectional detonation. In particular, the arrester consists of a shock absorber (1) and the PROTEGO<sup>®</sup> flame arrester unit (2). The PROTEGO<sup>®</sup> flame arrester unit consists of several FLAMEFILTER<sup>®</sup> discs (3) and spacers firmly held in a FLAMEFILTER<sup>®</sup> cage (4). It is moveable and can be folded to the side for maintenance. The primary goal of this design is to enable the tank to be vented or supplied with air in an emergency when ice or crystallizing products clog the FLAMEFILTER<sup>®</sup>. The PROTEGO<sup>®</sup> BR/TS flame arrester is available for explosion groups IIA to IIB (NEC group D to B MESG  $\geq$  0.5 mm).

| Table 1: Material selection for housing |           |                 |  |  |  |  |
|-----------------------------------------|-----------|-----------------|--|--|--|--|
| Design                                  | А         | В               |  |  |  |  |
| Housing                                 | Steel     | Stainless Steel |  |  |  |  |
| Cover                                   | Steel     | Stainless Steel |  |  |  |  |
| Gasket                                  | Tankatite | Tankatite       |  |  |  |  |
| Flame arrester unit                     | A         | A               |  |  |  |  |

## Table 3: Flange connection type

EN 1092-1; Form B1

ASME B16.5; 150 lbs RFSF

The standard design is approved up to an operating temperature of  $+60^{\circ}$ C /  $140^{\circ}$ F and an operating pressure up to 1.6 bar / 23.2 psi (absolute), and it meets all the conditions of the ADN\* for hazardous goods transport on European Inland Waterways.

Type-tests according to EN ISO 16852 and classification societies are available.

#### **Special Features and Advantages**

- meets all ADN\* requirements
- flat design
- the emergency venting with the flexibly mounted flame arrester enables use even in bad weather conditions as well as with contaminated products
- · extraordinarily easy to service
- the design of the PROTEGO<sup>®</sup> flame arrester unit enables individual FLAMEFILTER<sup>®</sup> discs to be replaced
- · we offer support in calculating loading and unloading rates
- · applicable for nearly all flammable liquids
- · may be used as maintenance and cleaning hatch
- · cost efficient spare parts
- \* European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

| Table 2: Material for flame arrester unit |                 |  |  |  |  |  |
|-------------------------------------------|-----------------|--|--|--|--|--|
| Design                                    | А               |  |  |  |  |  |
| FLAMEFILTER <sup>®</sup> cage             | Stainless Steel |  |  |  |  |  |
| FLAMEFILTER <sup>®</sup>                  | Stainless Steel |  |  |  |  |  |
| Spacer                                    | Stainless Steel |  |  |  |  |  |

other types upon request

**Flow Capacity Chart** 

## PROTEGO® BR/TS-80-IIB-P1.6



The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in [m<sup>3</sup>/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".



for safety and environment

pressure drop Δp [mbar]

pressure drop Δp - inch W.C.



## Detonation Flame Arrester Detonation-proof foot valve for suction lines

## PROTEGO® EF/V-IIB3





#### **Function and Description**

The PROTEGO® EF/V-IIB3 detonation-safe foot valve protects the suction line in a storage tank. The virtually maintenance-free device is installed at the end of the emptying line within the tank. During suction, the valve opens at an approximate under-pressure of 30 mbar / 12 inch W.C. When the pump is turned off, the device functions as a check valve and prevents the line from emptying. This is very helpful when the pump is restarted.

Combustible mixtures can form in filling and drain lines of storage containers that are not always filled with product. Ignition of explosive atmospheres can lead to highly accelerated pipe deflagration or detonations. The detonation-proof foot valve prevents the combustion from being transmitted into the tank and destroying it. The design of the foot valve ensures that the strainer is always filled with residual product. Together with the special valve design, this combination prevents flame flash back from the inside out.

The application limits for the device are a product vapor/air mixture temperature of up to  $+60^{\circ}$ C /  $140^{\circ}$ F and an absolute pressure up to 1.1 bar / 15.9 psi. This covers all the possible operating conditions of empty lines for flammable liquids.

The device protects against nearly all flammable liquids and is permitted for explosion group IIB3 (C MESG  $\geq$  0.65 mm).

Type-approved in accordance with the current ATEX Directive and EN ISO 16852, as well as other international standards.

#### **Special Features and Advantages**

- virtually maintenance-free
- · check valve makes starting the pump easier
- provides protection against deflagrations and stable detonations
- useable for nearly all flammable liquids
- meets TRGS\* requirements
- · special strainer prevents solid particles from entering

\* TRGS = technical regulations for hazardous substances

| Table                                                                                      | Table 1: Dimensions         Dimensions in mm / inches |       |       |       |       |       |       |       |       |       |       |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| To select the nominal size (DN), please use the flow capacity chart on the following page. |                                                       |       |       |       |       |       |       |       |       |       |       |
| DN                                                                                         | 25                                                    | 32    | 40    | 50    | 65    | 80    | 100   | 125   | 150   | 200   | 250   |
|                                                                                            | 1"                                                    | 1 ¼"  | 1 ½"  | 2"    | 2 ½"  | 3"    | 4"    | 5"    | 6"    | 8"    | 10"   |
| а                                                                                          | 125 /                                                 | 125 / | 135 / | 135 / | 160 / | 160 / | 200 / | 235 / | 260 / | 400 / | 450 / |
|                                                                                            | 4.92                                                  | 4.92  | 5.31  | 5.31  | 6.29  | 6.29  | 7.87  | 9.25  | 10.24 | 15.75 | 17.72 |
| b                                                                                          | 85 /                                                  | 85 /  | 85 /  | 85 /  | 95 /  | 95 /  | 125 / | 130 / | 135 / | 175 / | 200 / |
|                                                                                            | 3.35                                                  | 3.35  | 3.35  | 3.35  | 3.74  | 3.74  | 4.92  | 5.12  | 5.31  | 6.89  | 7.81  |
| с                                                                                          | 155 /                                                 | 155 / | 180 / | 180 / | 210 / | 210 / | 250 / | 310 / | 365 / | 480 / | 565 / |
|                                                                                            | 6.10                                                  | 6.10  | 7.09  | 7.09  | 8.27  | 8.27  | 9.84  | 12.20 | 14.37 | 18.90 | 22.24 |

| Table 2: Selection of the explosion group |                     |                 |                                 |  |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|---------------------------------|--|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) | Special opprovals upon request  |  |  |  |  |  |
| ≥ 0,65 mm                                 | IIB3                | С               | Special approvais upon request. |  |  |  |  |  |

| Table 3: Specification of max. operating temperature |                                                |                                             |  |  |  |  |  |
|------------------------------------------------------|------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| ≤ 60°C / 140°F                                       | Tmaximum allowable operating temperature in °C | Higher operating temperatures upon request  |  |  |  |  |  |
| -                                                    | Classification                                 | righer operating temperatures upon request. |  |  |  |  |  |

| Table 4: Material selection for housing |                 |                 |                 |                 |                                 |  |  |  |  |
|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|---------------------------------|--|--|--|--|
| Design                                  | А               | В               | С               | D               |                                 |  |  |  |  |
| Housing                                 | Steel           | Stainless Steel | Steel           | Stainless Steel |                                 |  |  |  |  |
| Valve                                   | Stainless Steel | Stainless Steel | Stainless Steel | Stainless Steel | Special motorials upon reques   |  |  |  |  |
| Gasket (Valve)                          | PTFE            | PTFE            | PTFE            | PTFE            | Special materials upon request. |  |  |  |  |
| Gasket (Housing)                        | Housing) FPM    |                 | PTFE            | PTFE            | -                               |  |  |  |  |
| Strainer                                | Stainless Steel | Stainless Steel | Stainless Steel | Stainless Steel |                                 |  |  |  |  |



Conversion:  $\vec{V}_{water} = \vec{V}_{liquid} * \sqrt{\frac{\rho_{liquid}}{\rho_{water}}}$   $\vec{V}_{liquid} = \vec{V}_{water} * \sqrt{\frac{\rho_{water}}{\rho_{liquid}}}$ 





for safety and environment



## Liquid Detonation Flame Arrester

for filling and drain lines - internal installation



PROTEGO® LDA-F



#### **Function and Description**

The PROTEGO<sup>®</sup> LDA-F series of liquid detonation arresters was developed for storage tanks filling and drain lines that are not continuously filled with product and sometimes contain a combustible mixture. The integrated siphon protection (1) with PROTEGO<sup>®</sup> flame arrester unit (2) additionally prevents the liquid, in which the lines are immersed, from being siphoned off while the container is being drained. The PROTEGO<sup>®</sup> flame arrester unit consists of several FLAMEFILTER<sup>®</sup> discs (3) and spacers firmly held in a FLAMEFILTER<sup>®</sup> cage (4). The number of FLAMEFILTER<sup>®</sup> discs and their gap size depends on the arrester's intended use.

The device is installed inside the container at the end of the line and prevents the combustion from being transferred into the tank if the explosive atmosphere

ignites. The PROTEGO<sup>®</sup> LDA-F series of liquid detonation arresters combine the classic PROTEGO<sup>®</sup> flame arrester design with the siphon principle in which the liquid product serves as a barrier to flame propagation.

When a highly accelerated pipe deflagration or detonation occurs, the combustion pressure and flame propagation speed are substantially reduced by the design, converted into a low-energy deflagration, and then stopped by the remaining immersion liquid and the PROTEGO<sup>®</sup> flame arrester.

The application limits for the device is product vapor/air mixture temperatures up to +60°C / 140°F and an absolute pressure up to 1.1 bar / 15.9 psi. This covers all possible operating conditions of empty lines for flammable liquids. The liquid detonation arrester in standard design is pressure-resistant up to 10 bar / 145 psi. The device protects against nearly all flammable liquids and is approved for explosion groups IIA to IIB3 (NEC group D and C MESG  $\geq$  0.65 mm). Type-approved in accordance with the current ATEX Directive and EN ISO 16852, as well as other international standards.

#### **Special Features and Advantages**

- siphon protection offers increased safety
- low risk of contamination
- low pressure loss
- provides protection against deflagrations and stable detonations
- · useable for nearly all flammable liquids
- meets TRGS\* requirements
- · available with different connections
  - \* TRGS = technical regulations for hazardous substances

#### Table 1: Dimensions

| To select the nominal size (DN), please use the flow capacity chart on the following pages. |       |       |       |       |        |        |        |        |        |        |        |
|---------------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
| DN                                                                                          | 25    | 32    | 40    | 50    | 65     | 80     | 100    | 125    | 150    | 200    | 250    |
|                                                                                             | 1"    | 1 ¼"  | 1 ½"  | 2"    | 2 ½"   | 3"     | 4"     | 5"     | 6"     | 8"     | 10"    |
| а                                                                                           | 550 / | 550 / | 650 / | 650 / | 850 /  | 875 /  | 1050 / | 1250 / | 1450 / | 1600 / | 1975 / |
|                                                                                             | 21.65 | 21.65 | 25.59 | 25.59 | 33.46  | 34.45  | 41.34  | 49.21  | 57.09  | 62.99  | 77.76  |
| b                                                                                           | 588 / | 590 / | 692 / | 695 / | 895 /  | 925 /  | 1102 / | 1305 / | 1505 / | 1662 / | 2043 / |
|                                                                                             | 23.15 | 23.23 | 27.24 | 27.36 | 35.24  | 36.42  | 43.39  | 51.38  | 59.25  | 65.43  | 80.43  |
| с                                                                                           | 775 / | 775 / | 875 / | 875 / | 1075 / | 1095 / | 1270 / | 1480 / | 1680 / | 1830 / | 2275 / |
|                                                                                             | 30.51 | 30.51 | 34.45 | 34.45 | 42.32  | 43.11  | 50.00  | 58.27  | 66.14  | 72.05  | 89.57  |
| d                                                                                           | 140 / | 140 / | 220 / | 220 / | 275 /  | 275 /  | 356 /  | 457 /  | 508 /  | 600 /  | 711 /  |
|                                                                                             | 5.51  | 5.51  | 8.66  | 8.66  | 10.83  | 10.83  | 14.07  | 17.99  | 20.00  | 23.62  | 27.99  |

| Table 2: Selection of the explosion group |                     |                 |                                 |  |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|---------------------------------|--|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) |                                 |  |  |  |  |  |
| ≥ 0,65 mm                                 | IIB3                | С               | Special approvais upon request. |  |  |  |  |  |

Dimensions in mm / inches

| Stabilized FLAME<br>Discs (Flyer pdf) | FILTER |
|---------------------------------------|--------|

| Table 3: Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of max. operating tempera                                                                                                                                                       | ature                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ≤ 60°C / 140°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tmaximum allowable opera                                                                                                                                                        | Higher operating temperatures upon request                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Classification                                                                                                                                                                  | Higher operating temperatures upon request.                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Table 4: Material sele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ction for housing                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                                                                                                                                                                               | В                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Housing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Steel                                                                                                                                                                           | Stainless Steel                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Shock absorber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Steel                                                                                                                                                                           | Stainless Steel                                                                                                        | Special materials upon request.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Gasket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FPM                                                                                                                                                                             | PTFE                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Flame arrester unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | А                                                                                                                                                                               | A                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Table 5: Material for fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ame arrester unit                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| FLAMEFILTER® cade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stainless Steel                                                                                                                                                                 | - *The FLAMEFILTER® is a                                                                                               | also available in Tantalum, Inconel, Copper, etc.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| FLAMEFILTER® *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stainless Steel                                                                                                                                                                 | when the listed housing a                                                                                              | and cage materials are used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Spacer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stainless Steel                                                                                                                                                                 | <ul> <li>Special materials upon re</li> </ul>                                                                          | equest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Table 6: Flange conne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ection type                                                                                                                                                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| EN 1092-1; Form B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                               |                                                                                                                        | Other types upon request.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ASME B16.5 CL 150 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .F.                                                                                                                                                                             |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Table 7: Outlet type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Straight pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                 | 1                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Beveled pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 | II         Other types upon request.                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| EN 1092-1; Form B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                 |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| ASME B16.5 CL 150 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R.F.                                                                                                                                                                            | III                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Flow Capacity Chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - DN 25,                                                                                                                                                                        | - DN 32/114"<br>- DN 40/114"<br>- DN 50/2"<br>- DN 65/212"<br>- DN 80/3"<br>- DN 80/3"                                 | $- \frac{DN}{125/5'},$<br>$- \frac{DN}{150/6''},$<br>$- \frac{DN}{200/8''},$<br>$- \frac{DN}{250/10''},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| flowrate (w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ater) in thousands of CFH                                                                                                                                                       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 0,035 0,1<br>5000 du<br>1000 du<br>1000 du<br>1000 du<br>1000 du<br>100 du<br>1 | 0.2 0.5 1<br>F-IIB3                                                                                                                                                             |                                                                                                                        | 20 50 100<br>1000<br>200<br>500<br>1000<br>200<br>500<br>1000<br>200<br>500<br>1000<br>200<br>1000<br>200<br>1000<br>200<br>1000<br>200<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000 |  |  |  |
| flow rate V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (m³/h) (water)                                                                                                                                                                  | L                                                                                                                      | eistung-000368-en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Conversion<br>The volume flow $\dot{V}$ in m <sup>3</sup> /<br>T <sub>n</sub> = 20°C and an atmosp<br>To avoid electrostatic cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n: $\vec{V}_{water} = \vec{V}_{liquid} * \sqrt{\frac{\rho_{liqu}}{\rho_{wat}}}$<br>h was determined with water<br>oheric pressure $p_n = 1,013$ being of flammable liquids, the | $V_{liquid}$ = $V_{liquid}$ =<br>; in accordance with DIN E ar, kinematic viscosity v =<br>e maximum flow is limited ( | $V_{water} * \sqrt{\frac{P_{water}}{P_{liquid}}}$<br>EN 60534, at a temperature 10 <sup>-6</sup> m <sup>2</sup> /s.<br>(refer to TRGS 727,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| CENELEC-Report CLC/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R 60079-32-1).                                                                                                                                                                  |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 |                                                                                                                        | for safety and environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |



## Liquid Detonation Flame Arrester

for filling lines - internal installation



PROTEGO<sup>®</sup> LDA



Tank connection / protected side

#### **Function and Description**

The PROTEGO<sup>®</sup> LDA series of liquid detonation arresters was developed for storage tank filling lines that are not continuously filled with product and sometimes contain a combustible mixture.

The device is installed inside the tank at the end of the line and prevents the combustion from being transferred into the tank if the explosive atmosphere ignites. The liquid detonation arresters function according to the siphon principle in which the liquid product serves as a liquid barrier to flame propagation.

When a highly accelerated pipe deflagration or detonation occurs, the combustion pressure and flame propagation speed is substantially reduced by the design, converted into a lowenergy deflagration, and then stopped by the remaining immersion liquid.

The application range for the device is a product vapor/air mixture temperature of up to +  $60^{\circ}$ C /  $140^{\circ}$ F and an absolute pressure up to 1.1 bar / 15.9 psi. This covers all possible operating conditions of empty lines for flammable liquids. The liquid detonation arrester is pressure-resistant up to 10 bar / 145 psi. The device protects against nearly all flammable liquids and is approved for explosion groups IIA to IIB3 (NEC group D to C MESG ≥ 0.65 mm).

Type-approved in accordance with the current ATEX Directive and EN ISO 16852, as well as other international standards.

#### **Special Features and Advantages**

- · simple construction provides low risk of contamination
- low pressure loss
- provides protection against deflagrations and stable detonations
- · useable for nearly all flammable liquids
- meets TRGS\* requirements
- available with different connections
- \* TRGS = technical regulations for hazardous substances

#### **Table 1: Dimensions**

To select the nominal size (DN), please use the flow capacity chart on the following pages.

| DN | 25    | 32    | 40    | 50    | 65     | 80     | 100    | 125    | 150    | 200    | 250    |
|----|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
|    | 1"    | 1 ¼"  | 1 ½"  | 2"    | 2 ½"   | 3"     | 4"     | 5"     | 6"     | 8"     | 10"    |
| а  | 500 / | 580 / | 700 / | 700 / | 825 /  | 925 /  | 1050 / | 1150 / | 1350 / | 1650 / | 2000 / |
|    | 19.69 | 22.83 | 27.56 | 27.56 | 32.48  | 36.42  | 41.34  | 45.28  | 53.15  | 64.96  | 78.74  |
| b  | 538 / | 620 / | 745 / | 745 / | 870 /  | 975 /  | 1102 / | 1205 / | 1405 / | 1712 / | 2068 / |
|    | 21.18 | 24.41 | 29.33 | 29.33 | 34.25  | 38.39  | 43.39  | 47.44  | 55.31  | 67.40  | 81.42  |
| с  | 725 / | 805 / | 925 / | 925 / | 1050 / | 1145 / | 1270 / | 1380 / | 1580 / | 1880 / | 2300 / |
|    | 28.54 | 31.69 | 36.42 | 36.42 | 41.34  | 45.08  | 50.00  | 54.33  | 62.20  | 74.02  | 90.55  |
| d  | 115 / | 140 / | 168 / | 168 / | 220 /  | 245 /  | 325 /  | 356 /  | 500 /  | 600 /  | 700 /  |
|    | 4.53  | 5.51  | 6.61  | 6.61  | 8.66   | 9.65   | 12.80  | 14.02  | 19.69  | 23.62  | 27.56  |
| е  | 50 /  | 58 /  | 65 /  | 65 /  | 95 /   | 105 /  | 135 /  | 155 /  | 200 /  | 250 /  | 300 /  |
|    | 1.97  | 2.28  | 2.56  | 2.56  | 3.74   | 4.13   | 5.31   | 6.10   | 7.87   | 9.84   | 11.81  |

Dimensions in mm / inches

| Table 2: Selection of th                 | e explosion group                                              |                                |                                             |
|------------------------------------------|----------------------------------------------------------------|--------------------------------|---------------------------------------------|
| MESG                                     | Expl. Gr. (IEC/CEN)                                            | Gas Group (NEC)                |                                             |
| > 0.65 mm                                |                                                                |                                | Special approvals upon request.             |
| 2 0,05 1111                              | IIDS                                                           | C                              |                                             |
| Table 3: Specification o                 | f max. operating temperat                                      | ure                            |                                             |
| ≤ 60°C / 140°F                           | Tmaximum allowable operati                                     | ng temperature in °C           |                                             |
| -                                        | Classification                                                 |                                | Higher operating temperatures upon request. |
|                                          |                                                                |                                |                                             |
| Table 4: Material selecti                | on for housing                                                 |                                |                                             |
| Design                                   | А                                                              | В                              |                                             |
| Housing                                  | Steel                                                          | Stainless Steel                | Special materials upon request.             |
| Gasket                                   | PTFE                                                           | PTFE                           |                                             |
|                                          |                                                                |                                |                                             |
| Table 5: Flange connect                  | tion type                                                      |                                |                                             |
| EN 1092-1; Form B1                       |                                                                |                                |                                             |
| ASME B16.5 CL 150 R.F.                   |                                                                |                                | Other types upon request.                   |
|                                          |                                                                |                                |                                             |
| Table 6: Outlet type                     |                                                                |                                |                                             |
| Straight pipe                            |                                                                | 1                              |                                             |
| Beveled pipe                             |                                                                | II                             | Other types upon request                    |
| EN 1092-1; Form B1                       |                                                                | III                            | Other types upon request.                   |
| ASME B16.5 CL 150 R.I                    | F.                                                             | III                            |                                             |
|                                          |                                                                |                                | ě.                                          |
| Flow Capacity Chart                      |                                                                | 7"<br>11/4<br>2"               | 2 1/2<br>/ 4"<br>/ 8"<br>/ 10,              |
|                                          |                                                                | 25<br>50<br>50                 | -37<br>100<br>125<br>125<br>250<br>250      |
|                                          |                                                                |                                | Na N    |
|                                          |                                                                |                                |                                             |
| flowrate (wa                             | ater) in thousands of CFH                                      |                                |                                             |
| 0,035 0                                  | ,1 0,2 0,5                                                     | 1 2 5                          | 10 20 50 100                                |
| 5000                                     |                                                                |                                | 2000                                        |
|                                          |                                                                |                                |                                             |
|                                          |                                                                |                                |                                             |
| 500 500                                  |                                                                |                                |                                             |
| <u>4</u> 200                             |                                                                |                                |                                             |
|                                          |                                                                |                                | -50 0                                       |
| or p 50                                  |                                                                |                                |                                             |
| e la |                                                                |                                |                                             |
|                                          |                                                                |                                |                                             |
| 10 10                                    |                                                                |                                |                                             |
| 5                                        |                                                                |                                | 2,01                                        |
| 1 2                                      | 5 10 20                                                        | 50 100 200                     | 500 1000 2000 3000                          |
| flow rate V                              | (m³/h) (water)                                                 |                                | Leistung-000367-en                          |
|                                          |                                                                |                                |                                             |
| Conversion:                              | $\vec{V} = V_{i} + \sqrt{\frac{\rho_{liquid}}{\rho_{liquid}}}$ |                                | * *                                         |
| 2,5                                      | water liquid ${\cal P}_{ m water}$                             | liquid                         | $\rho_{liquid}$                             |
| The volume flow V in m <sup>3</sup> /h   | was determined with water                                      | in accordance with DIN EN      | 60534 at a temperature                      |
| $T = 20^{\circ}$ C and an atmosph        | eric pressure $n = 1.013$ ba                                   | r kinematic viscosity $y = 10$ | $r^{-6}$ m <sup>2</sup> /s                  |

spheric pressu ep<sub>n</sub> = 1,013 bar, kir n Ly To avoid electrostatic charge of flammable liquids, the maximum flow is limited (refer to TRGS 727,

CENELEC-Report CLC/TR 60079-32-1).







## PROTEGO® LDA-WF(W)



#### **Function and Description**

Table 1: Dimensions

The PROTEGO<sup>®</sup> LDA-WF(W) series of liquid detonation flame arresters was developed for storage container filling lines that are not continuously filled with product and sometimes contain a combustible mixture. The integrated siphon protection (1) with PROTEGO<sup>®</sup> flame arrester unit (2) additionally prevents the liquid, in which the lines are immersed, from being siphoned off while the container is being drained. The PROTEGO<sup>®</sup> flame arrester unit consists of several FLAMEFILTER<sup>®</sup> discs (3) and spacers firmly held in a FLAMEFILTER<sup>®</sup> cage (4). The number of FLAMEFILTER<sup>®</sup> discs and their gap size depends on the arrester's intended use. The device is installed outside the container in the filling and drain lines. If the explosive atmosphere is ignited, the device prevents the combustion from traveling into the tank. The PROTEGO<sup>®</sup> LDA-WF(W) series of liquid detonation flame arresters combines the classic PROTEGO<sup>®</sup> flame arrester design with the siphon principle in which the liquid product serves as a barrier to flame propagation.

When a highly accelerated pipe deflagration or detonation occurs, the combustion pressure and flame propagation speed are substantially reduced, converted into a low-energy deflagration, and then stopped by the remaining immersion liquid and the PROTEGO<sup>®</sup> flame arrester.

The application range for the device is a product vapor/air mixture temperature of up to +60°C / 140°F and an absolute pressure up to 1.1 bar / 15.9 psi. **Devices with special approval for higher temperatures are available upon request.** This covers all possible operating conditions of empty lines for flammable liquids. The liquid detonation arrester is designed for pressures of up to 10 bar / 145 psi, resists explosion pressure, and provides protection for almost all flammable liquids. The device is approved for explosion groups IIA to IIB3 (NEC group D to C MESG  $\geq$  0.65 mm). **Special designs with a cleaning cover for highly viscous liquids can be provided.** 

Type-approved in accordance with the current ATEX Directive and EN ISO 16852, as well as other international standards

#### **Special Features and Advantages**

- · easily accessible due to external installation
- siphon protection offers increased safety
- low risk of contamination
- low pressure loss
- provides protection against deflagrations and stable detonations
- · useable for nearly all flammable liquids
- meets TRGS\* requirements
  - \* TRGS = technical regulations for hazardous substances

| To select tl                              | To select the nominal size (DN), please use the flow capacity chart on the following pages. |       |       |       |       |       |       |        |        |        |        |
|-------------------------------------------|---------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| DN                                        | 25                                                                                          | 32    | 40    | 50    | 65    | 80    | 100   | 125    | 150    | 200    | 250    |
|                                           | 1"                                                                                          | 1 ¼"  | 1 ½"  | 2"    | 2 ½"  | 3"    | 4"    | 5"     | 6"     | 8"     | 10"    |
| а                                         | 250 /                                                                                       | 250 / | 346 / | 350 / | 446 / | 450 / | 500 / | 600 /  | 600 /  | 700 /  | 900 /  |
|                                           | 9.84                                                                                        | 9.84  | 13.62 | 13.78 | 17.56 | 17.72 | 19.69 | 23.62  | 23.62  | 27.56  | 35.43  |
| b                                         | 325 /                                                                                       | 325 / | 415 / | 415 / | 535 / | 535 / | 600 / | 915 /  | 915 /  | 1090 / | 1300 / |
|                                           | 12.80                                                                                       | 12.80 | 16.34 | 16.34 | 21.06 | 21.06 | 23.62 | 36.02  | 36.02  | 42.91  | 51.18  |
| с                                         | 475 /                                                                                       | 475 / | 605 / | 605 / | 831 / | 831 / | 936 / | 1340 / | 1340 / | 1520 / | 1750 / |
|                                           | 18.70                                                                                       | 18.70 | 23.82 | 23.82 | 32.72 | 32.72 | 36.58 | 52.76  | 52.76  | 59.84  | 68.90  |
| d                                         | 150 /                                                                                       | 150 / | 210 / | 210 / | 275 / | 275 / | 325 / | 460 /  | 460 /  | 510 /  | 610 /  |
|                                           | 5.91                                                                                        | 5.91  | 8.27  | 8.27  | 10.83 | 10.83 | 12.80 | 18.11  | 18.11  | 20.08  | 24.02  |
| Table 2: Selection of the explosion group |                                                                                             |       |       |       |       |       |       |        |        |        |        |

| Table 2: Selection of the explosion group |                     |                 |                                   |  |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|-----------------------------------|--|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) | Special approvals upon request    |  |  |  |  |  |
| ≥ 0,65 mm                                 | IIB3                | С               | - Special approvais upon request. |  |  |  |  |  |

Dimensions in mm / inches



| Table 3: S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pecification of r                       | nax. operating tempera                                                    | ture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ≤ 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | °C / 140°F                              | Tmaximum allowable ope                                                    | rating temperature in °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ligher energing temperatures upon request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                       | Classification                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Higher operating temperatures upon request.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 4: M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | laterial selection                      | n for housing                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | A                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Housing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | Steel                                                                     | Stainless Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shock abs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sorber                                  | Steel                                                                     | Stainless Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gasket (sl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hock absorber)                          | FPM                                                                       | PTFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Special materials upon request.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gasket (lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ocking screw)                           | PTFE                                                                      | PTFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flame arr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ester unit                              | А                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 5: M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | laterial for flame                      | arrester unit                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | A                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FLAMEFIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _TER <sup>®</sup> cage                  | Stainless Steel                                                           | — * The FLAMEFILTER <sup>®</sup> is when the listed beyoing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | also available in Tantalum, Inconel, Copper, etc.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FLAMEFIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _TER <sup>®</sup> *                     | Stainless Steel                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spacer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | Stainless Steel                                                           | <ul> <li>Special materials upon re</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | equest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 6: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lange connectio                         | n type                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EN 1092-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I; Form B1                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ASME B16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.5 CL 150 R.F.                         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Other types upon request.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                           | ž ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ču s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Flow Capa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acity Chart                             |                                                                           | / 1 1/4"<br>/ 1 1/4"<br>/ 2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /2 1/2"<br>/3"<br>)/4"<br>)/6"<br>)/8"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Flow Capa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acity Chart                             |                                                                           | N 25 / 1"<br>N 32 / 1 1/4"<br>N 40 / 1 1/2"<br>N 50 / 2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N 65/21/2<br>N 80/3<br>N 100/4<br>N 125/5<br>N 150/6<br>N 200/8<br>N 250/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Flow Capa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acity Chart                             |                                                                           | - DN 25/1"<br>- DN 32/11/4"<br>- DN 40/11/2"<br>- DN 50/2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{l}   - DN 65_{2} 1_{1/2} \\   - DN 80_{3} \\   - DN 100_{4} \\   - DN 155_{5} \\   - DN 250_{6} \\   - DN 200_{8} \\   - DN 250_{10} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Flow Capa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acity Chart                             | ) in thousands of CFH                                                     | $- DN_{25/7,}$ $- DN_{32/7,1/4,}$ $- DN_{40/7,1/2,}$ $- DN_{50/2,}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{l}   - D_{N} 6_{S_{1}/2}, \\   - D_{N} 8_{D_{1}/3}, \\   - D_{N} 10_{0/4}, \\   - D_{N} 15_{0/6}, \\   - D_{N} 20_{0/8}, \\   - D_{N} 23_{0/10}, \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Flow Capa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acity Chart                             | r <mark>) in thousands of CFH</mark><br>0,2 0,5                           | " <sup>2</sup> /1 <sup>1</sup> / <sup>0</sup> SNQ - 5<br>" <sup>k</sup> /1 <sup>1</sup> / <sup>2</sup> ENQ - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Flow Capa<br>0,0<br>5000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | acity Chart                             | ) in thousands of CFH                                                     | $\frac{\frac{1}{\sqrt{2}}}{\sqrt{2}} \frac{1}{\sqrt{2}} $ | $ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Flow Capa<br>0,0<br>5000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | flowrate (water                         | •) in thousands of CFH<br>0,2 0,5                                         | ${}^{n,Z/1}_{-} {}^{L/0} S_{NQ} - {}^{5-}_{-} {}^{n,Z/1}_{-} {}^{L/0} N_{Q} - {}^{5-}_{-} {}^{n,Z/1}_{-} {}^{L/0} S_{NQ} - {}^{5-}_{-} {}^{n,Z/1}_{-} {}^{L/0} S_{NQ} - {}^{5-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1-}_{-} {}^{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{{}^{+}O_{L}}{{}^{+}O_{2}} = \frac{{}^{+}O_{2}}{{}^{+}O_{2}} = \frac{{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Flow Capa<br>0,0<br>5000 -<br>1000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | flowrate (water                         | •) in thousands of CFH<br>0,2 0,5<br>                                     | $\frac{\frac{1}{2}}{\frac{1}{2}} \frac{1}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Flow Capa<br>0,(<br>5000 -<br>1000 -<br>1000 -<br>500 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flowrate (water<br>035 0,1<br>LDA-WF(W) | •) in thousands of CFH                                                    | $- C_{N} = \frac{1}{2} \sum_{j=1}^{N} \frac{1}{2} \sum_{j=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$         |
| Flow Capa<br>0,0<br>5000 -<br>1000 -<br>500 -<br>200 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flowrate (water                         | •) in thousands of CFH<br>0,2 0,5<br>                                     | $\frac{\frac{1}{2}}{\frac{1}{2}} \frac{1}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-\frac{DW}{25}/21/2^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Flow Capa<br>0,0<br>5000<br>1000<br>1000<br>200<br>200<br>100<br>200<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | flowrate (water                         | •) in thousands of CFH                                                    | $\frac{\frac{1}{2}}{1-\frac{1}{2}} = \frac{1}{2} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $p \Delta p - inch W.C.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Flow Capa<br>0,(<br>5000 -<br>1000 -<br>200 -<br>200 -<br>100 -<br>100 -<br>50 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | flowrate (water                         | •) in thousands of CFH<br>0,2 0,5<br>•••••••••••••••••••••••••••••••••••• | $\frac{\frac{1}{2}}{\frac{1}{2}} \frac{1}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | drop $\Delta p$ - inch W.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Flow Capa<br>0,(<br>5000 -<br>1000 -<br>200 -<br>100 -<br>100 -<br>50 -<br>200 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | flowrate (water                         | •) in thousands of CFH                                                    | $\frac{\frac{1}{2}}{\frac{1}{2}} \frac{1}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\int_{0}^{D_{N}} \frac{1}{2} \int_{0}^{D_{N}} \frac{1}{2$                                                                                                      |
| Flow Capa<br>0,0<br>5000 -<br>1000 -<br>200 -<br>200 -<br>00 -<br>00 -<br>200 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | flowrate (water                         | •) in thousands of CFH                                                    | $\frac{\frac{1}{2}}{\frac{1}{2}} \frac{1}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $= \frac{DW_{2S}}{2} \frac{1}{2} \frac{1}{10}$ $= \frac{DW_{2S}}{2} \frac{1}{2} \frac{1}{10}$ $= \frac{DW_{2S}}{2} \frac{1}{2} \frac{1}{10}$ $= \frac{DW_{2S}}{2} \frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flow Capa<br>0,(<br>5000 -<br>1000 -<br>1000 -<br>200 -<br>100 -<br>00 -<br>00 -<br>100 -<br>500 -<br>200 -<br>100 -<br>500 -                                                                                               | acity Chart                             | •) in thousands of CFH                                                    | $\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \frac{1}{\sqrt{2}} \frac{1}{$ | $\int_{0}^{2N} \frac{1}{2} \int_{0}^{2N} $ |
| Flow Capa<br>0,(<br>5000 -<br>1000 -<br>200 -<br>200 -<br>100 -<br>100 -<br>20 -<br>20 -<br>100 -<br>50 -<br>20 -<br>50 -<br>20 -<br>50 -<br>20 -<br>50 - | flowrate (water<br>1 2                  | •) in thousands of CFH                                                    | $\frac{\frac{1}{2} - \frac{1}{2} - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\int_{-D_{1}}^{D_{2}} \int_{-D_{1}}^{D_{2}} \int_{-D_{1}}^{D_{2}} \int_{-D_{1}}^{D_{2}} \int_{-D_{1}}^{D_{1}} \int_{-D_{1}}^{D_{2}} \int_{-D_{1}}^{D_{1}} \int_{-D_{1}}^{D_{2}} \int_{-D_{1}}^{D_{1}} \int_{-D_{1}}^{D_{2}} \int_{-D_{1}}^{D_{1}} \int_{-D_{1}}^{D_{2}} \int_{-D_{1}}^{D_{1}} \int_{-D_{1}}^$                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Conversion:  $\dot{V_{water}} = \dot{V_{liquid}} * \sqrt{\frac{\rho_{liquid}}{\rho_{water}}}$ 



The volume flow  $\dot{V}$  in m<sup>3</sup>/h was determined with water, in accordance with DIN EN 60534, at a temperature  $T_n = 20^{\circ}$ C and an atmospheric pressure  $p_n = 1,013$  bar, kinematic viscosity  $v = 10^{-6}$  m<sup>2</sup>/s. To avoid electrostatic charge of flammable liquids, the maximum flow is limited (refer to TRGS 727,

CENELEC-Report CLC/TR 60079-32-1).

PROTEGO





## PROTEGO® LDA-W



Tank connection / protected side

#### **Function and Description**

**Table 1: Dimensions** 

The PROTEGO<sup>®</sup> LDA-W liquid detonation flame arrester was developed for storage container filling lines that are not continuously filled with product and sometimes contain a combustible mixture. The device is installed outside the container in the filling line. If the explosive atmosphere is ignited, the device prevents the combustion from transferring into the tank. The PROTEGO<sup>®</sup> LDA-W series of liquid detonation flame arresters function according to the siphon principle in which the liquid product serves as a barrier against flame propagation. When a highly accelerated pipe deflagration or detonation occurs, the combustion pressure and flame propagation speed are substantially reduced by the design and converted into a low-energy deflagration that is then stopped by the remaining immersion liquid.

The application range for the device is a product vapor / air mixture temperature of up to +60°C / 140°F and an absolute pressure of up to 1.1 bar / 15.9 psi. This covers all possible operating conditions of empty lines for flammable liquids. The liquid detonation arrester is designed for pressures of up to 10 bar / 145 psi, resists explosion pressure, and provides protection for almost all flammable liquids. The device is approved for explosion groups IIA to IIB3 (NEC group D to C MESG  $\geq$  0.65 mm). Special designs with a cleaning cover for highly viscous and contaminated liquids are available.

Type-approved in accordance with the current ATEX Directive and EN ISO 16852, as well as other international standards.

#### **Special Features and Advantages**

- · easily accessible due to external installation
- · low risk of contamination
- low pressure loss
- provides protection against deflagrations and stable detonations
- · useable for nearly all flammable liquids
- meets TRGS\* requirements
- can also be used as a dirt catcher in a maintenance friendly design
  - \* TRGS = technical regulations for hazardous substances

| To select the nominal size (DN), please use the flow capacity chart on the following pages. |       |       |       |       |       |       |       |        |        |        |        |        |
|---------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|
| DN                                                                                          | 25    | 32    | 40    | 50    | 65    | 80    | 100   | 125    | 150    | 200    | 250    | 300    |
|                                                                                             | 1"    | 1 ¼"  | 1 ½"  | 2"    | 2 ½"  | 3"    | 4"    | 5"     | 6"     | 8"     | 10"    | 12"    |
| а                                                                                           | 250 / | 275 / | 350 / | 350 / | 450 / | 450 / | 500 / | 600 /  | 600 /  | 700 /  | 850 /  | 1000 / |
|                                                                                             | 9.84  | 10.83 | 13.78 | 13.78 | 17.72 | 17.72 | 19.69 | 23.62  | 23.62  | 27.56  | 33.46  | 39.37  |
| b                                                                                           | 325 / | 360 / | 420 / | 420 / | 540 / | 540 / | 595 / | 915 /  | 915 /  | 1100 / | 1325 / | 1480 / |
|                                                                                             | 12.80 | 14.17 | 16.54 | 16.54 | 21.26 | 21.26 | 23.43 | 36.02  | 36.02  | 43.31  | 52.17  | 58.27  |
| с                                                                                           | 445 / | 480 / | 565 / | 565 / | 720 / | 720 / | 800 / | 1265 / | 1265 / | 1520 / | 1830 / | 2050 / |
|                                                                                             | 17.52 | 18.90 | 22.24 | 22.24 | 28.35 | 28.35 | 31.50 | 49.80  | 49.80  | 59.84  | 72.05  | 80.71  |
| d                                                                                           | 140 / | 140 / | 195 / | 195 / | 275 / | 275 / | 325 / | 460 /  | 460 /  | 510 /  | 610 /  | 700 /  |
|                                                                                             | 5.51  | 5.51  | 7.68  | 7.68  | 10.83 | 10.83 | 12.80 | 18.11  | 18.11  | 20.08  | 24.02  | 27.56  |

Dimensions in mm / inches

| Table 2: S   | Selection of the  | explosion             | group                                                                                                    |            |                                               |                                                                                                             |                                                 |                                                       |             |              |         |
|--------------|-------------------|-----------------------|----------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|-------------|--------------|---------|
| MESG         | i Exp             | pl. Gr. (IEC/CE       | EN)                                                                                                      | Ga         | as Group (NEC                                 | C)                                                                                                          | Onesial                                         |                                                       |             |              |         |
| ≥ 0,65 m     | nm                | IIB3                  |                                                                                                          |            | С                                             |                                                                                                             | Special approvais upon request.                 |                                                       |             |              |         |
| Table 2. C   | nacification of   |                       | ting to me or                                                                                            | oturo      |                                               |                                                                                                             |                                                 |                                                       |             |              |         |
|              |                   |                       | ung tempera                                                                                              |            | eneture in °C                                 |                                                                                                             |                                                 |                                                       |             |              |         |
| ≥ 00 (       | 2/140 F           |                       | owable operat                                                                                            | ing temp   | berature in C                                 |                                                                                                             | Higher o                                        | perating te                                           | emperatu    | res upon r   | equest. |
|              | -                 | lassification         | 1                                                                                                        |            |                                               |                                                                                                             |                                                 |                                                       |             |              |         |
| Table 4: M   | aterial selection | on for housi          | ng                                                                                                       |            |                                               |                                                                                                             |                                                 |                                                       |             |              |         |
| Design       | А                 |                       | В                                                                                                        |            | С                                             |                                                                                                             |                                                 |                                                       |             |              |         |
| Housing      | Steel             |                       | Stainless Ste                                                                                            | el         | Hastelloy                                     |                                                                                                             | Special I                                       | materials                                             | upon requ   | uest.        |         |
| Gasket       | PTFE              |                       | PTFE                                                                                                     |            | PTFE                                          |                                                                                                             |                                                 |                                                       |             |              |         |
|              |                   |                       |                                                                                                          |            |                                               |                                                                                                             |                                                 |                                                       |             |              |         |
| Table 5: F   | lange connecti    | on type               |                                                                                                          |            |                                               |                                                                                                             |                                                 |                                                       |             |              |         |
| EN 1092-1    | ; Form B1         |                       |                                                                                                          |            |                                               |                                                                                                             | Other tv                                        | pes upon                                              | request.    |              |         |
| ASME B16     | 6.5 CL 150 R.F.   |                       |                                                                                                          |            |                                               |                                                                                                             | o thor ty                                       | poo apon                                              | roquoot.    |              |         |
| Flow Capa    | city Chart        | ter) in thousa        | ands of CFH                                                                                              | - DN 25/1" | $- DN_{32/1} T_{1/4"}$ $- DN_{40/1} T_{1/4"}$ | $= \frac{D_{N_{S_0/2, \dots}}}{D_{N_{S_0/2, \dots}}}$ $= \frac{D_{N_{S_0/2, \dots}}}{D_{N_{S_0/2, \dots}}}$ | - DN <sub>80/3"</sub><br>- DN <sub>100/4"</sub> | $- \frac{D_{N}}{2S_{/5''}} - \frac{2S_{/5''}}{D_{N}}$ | - DN 20078" | - DN 300/12" |         |
| 0            | ,035 0,1          | 0,2                   | 0,5                                                                                                      | 1          | 2                                             | 5 1                                                                                                         | 10 20                                           | 50                                                    | D 100       | ) 140        |         |
| 5000         |                   |                       |                                                                                                          |            |                                               |                                                                                                             |                                                 |                                                       |             | 2000         |         |
|              |                   |                       |                                                                                                          |            |                                               |                                                                                                             |                                                 |                                                       | $\square$   | 1000         | U.      |
| 1000         |                   | -1163                 |                                                                                                          | $\neq$     |                                               | 4                                                                                                           |                                                 |                                                       |             | - 500        | N.      |
| equ 500      |                   |                       |                                                                                                          |            |                                               |                                                                                                             |                                                 |                                                       |             | 200          | inch    |
| _)<br>d√ 200 |                   |                       |                                                                                                          | XX         |                                               | ///                                                                                                         |                                                 |                                                       |             | 100          | - d1    |
| <b>d</b> 100 |                   |                       | $\langle / / \rangle$                                                                                    | $\angle$   |                                               | $\angle$                                                                                                    |                                                 |                                                       |             | - 50         | Z do    |
| р<br>0 50    |                   | / / ,                 |                                                                                                          | $\swarrow$ |                                               | ///                                                                                                         |                                                 |                                                       |             | 20           | e dr    |
| 20 -         |                   |                       |                                                                                                          | Z,         |                                               |                                                                                                             |                                                 |                                                       |             | - 10         | sure    |
| <b>Se</b> 10 |                   |                       |                                                                                                          |            |                                               |                                                                                                             |                                                 |                                                       |             | 5            | ores    |
| 5            |                   |                       |                                                                                                          |            |                                               |                                                                                                             |                                                 |                                                       |             | 2,01         | 4       |
|              | 1 1<br>1 2        | 5                     | 10 20                                                                                                    |            | 50 100                                        | 200                                                                                                         | 500                                             | 1000                                                  | 2000        | 4000         |         |
|              | flow rate V (     | m³/h) (water          | )                                                                                                        |            |                                               |                                                                                                             |                                                 | Leistung                                              | -000369-    | en           |         |
|              |                   |                       |                                                                                                          |            |                                               |                                                                                                             |                                                 |                                                       |             |              |         |
|              | Conversion:       | $\dot{V}_{water} = V$ | $\dot{\mathcal{P}}_{\text{liquid}} * \sqrt{\frac{\mathcal{P}_{\text{liquid}}}{\mathcal{P}_{\text{wa}}}}$ | uid<br>ter | $\dot{V_{ m lid}}$                            | $_{quid} = V_{v}$                                                                                           | $\frac{\rho_v}{\rho_l}$                         | vater<br>iquid                                        |             |              |         |
| The volume   | flow V in m³/h w  | as determin           | ed with wate                                                                                             | r, in acc  | ordance with                                  | n DIN EN                                                                                                    | 60534, at a                                     | a tempera                                             | ture        | 4            |         |

 $T_n = 20^{\circ}$ C and an atmospheric pressure  $p_n = 1,013$  bar, kinematic viscosity  $v = 10^{-6}$  m<sup>2</sup>/s. To avoid electrostatic charge of flammable liquids, the maximum flow is limited (refer to TRGS 727, CENELEC-Report CLC/TR 60079-32-1).



for safety and environment



for stable detonations and deflagrations in a straight through design with shock absorber, bi-directional

PROTEGO® DR/SBW



#### **Function and Description**

In the development of the PROTEGO<sup>®</sup> DR/SBW in-line detonation flame arrester, special effort was made to ease future maintenance of the flame arresters. The PROTEGO<sup>®</sup> flame arrester unit (5) can be removed and cleaned within moments without having to disassemble the piping. The effective shock absorber of the device and elaborate housing geometry reduces the number of FLAMEFILTER<sup>®</sup> discs to a minimum.

The device is symmetrical and offers bidirectional flame arresting protecting from stable detonations and deflagrations. The flame arrester consists of a double-jacket housing (1) with two integrated shock absorbers (2) with the PROTEGO® flame arrester unit in the center. The PROTEGO® flame arrester unit consists of several FLAMEFILTER® discs (4) and spacers firmly held in a FLAMEFILTER® cage (3). The number of FLAMEFILTER® discs and their gap size depends on the arrester's conditions of use. By indicating the operating parameters such as the temperature, pressure and explosion group and the composition of the fluid, the optimum in-line detonation flame arrester can be selected. The PROTEGO® DR/SBW series of flame arresters is available for explosion groups IIA to IIB3 (NEC group D to C MESG  $\geq$  0.65 mm).

The standard design is approved at an operating temperature up to  $+60^{\circ}$ C /  $140^{\circ}$ F and an absolute operating pressure acc. to table 3. Devices with special approvals can be obtained for higher pressures and higher temperatures upon request.

Type-approved according to ATEX Directive as well as other international standards.

#### **Special Features and Advantages**

- · particularly service-friendly design
- minimum number of FLAMEFILTER<sup>®</sup> discs due to use of effective shock absorber
- the modular design enables each individual FLAMEFILTER<sup>®</sup> discs to be exchanged
- bidirectional operation as well as any flow direction and installation position
- expanded application range for higher operating temperatures and pressures
- · installation of temperature sensors possible
- minimum pressure loss and hence low operating and lifecycle cost
- cost efficient spare parts

#### **Design Types and Specifications**

 There are four different designs available:
 DF

 Basic in-line detonation flame arrester
 DF

 In-line detonation flame arrester with integrated temperature sensor\*
 DF

 as additional protection against short time burning from one side
 DF

 In-line detonation flame arrester with two integrated temperature
 DF

sensors\* as additional protection against short time burning from both sides

In-line detonation flame arrester with heating jacket

Additional special flame arresters upon request \*Resistance thermometer for device group II, category (1) 2 (GII cat. (1) 2).

| Table   | Table 1: Dimensions         Dimensions in mm / inches                                                               |           |           |           |           |           |            |            |            |  |
|---------|---------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|--|
| To sele | To select the nominal size (DN) and nominal width (NG), please use the flow capacity charts on the following pages. |           |           |           |           |           |            |            |            |  |
| DN      | 50 / 2"                                                                                                             | 80 / 3"   | 100 / 4"  | 150 / 6"  | 200 / 8"  | 250 / 10" | 300 / 12"  | 350 / 14"  | 400 / 16"  |  |
| NG      | 150 / 6"                                                                                                            | 150 / 6"  | 200 / 8"  | 300 / 12" | 500 / 20" | 500 / 20" | 600 / 24"  | 700 / 28"  | 800 / 32"  |  |
| а       | 225/8.86                                                                                                            | 225/8.86  | 275/10.83 | 350/13.78 | 550/21.65 | 550/21.65 | 725/28.54  | 800/31.50  | 825/32.48  |  |
| b       | 210/8.27                                                                                                            | 210/8.27  | 220/8.66  | 290/11.42 | 525/20.67 | 525/20.67 | 590/23.23  | 655/25.78  | 725/28.54  |  |
| b1 *    | 325/12.80                                                                                                           | 325/12.80 | 360/14.17 | 475/18.70 | 835/32.87 | 835/32.87 | 960/37.80  | 1075/42.32 | 1215/47.83 |  |
| с       | 395/15.55                                                                                                           | 395/15.55 | 410/16.14 | 475/18.70 | 630/24.80 | 630/24.80 | 700/27.56  | 765/30.12  | 835/32.87  |  |
| c1 *    | 450/17.72                                                                                                           | 450/17.72 | 465/18.31 | 530/20.87 | 730/28.74 | 730/28.74 | 800/31.50  | 865/34.06  | 935/36.81  |  |
| d       | 275/10.83                                                                                                           | 275/10.83 | 325/12.80 | 460/18.11 | 840/33.07 | 840/33.07 | 1000/39.37 | 1150/45.28 | 1250/49.21 |  |

\* b1 dismantling dimension for servicing

c1 dismantling dimension for servicing (temperature sensor)

| Table 2: Selection of the explosion group |                     |                 |                                 |  |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|---------------------------------|--|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) |                                 |  |  |  |  |  |
| > 0,90 mm                                 | IIA                 | D               | Special approvals upon request. |  |  |  |  |  |
| ≥ 0,65 mm                                 | IIB3                | С               |                                 |  |  |  |  |  |

| Та       | ble 3: S | Selecti          | on of max. o | operating pr | essure     |            |            |            |            |            |            |
|----------|----------|------------------|--------------|--------------|------------|------------|------------|------------|------------|------------|------------|
|          |          | DN               | 50 / 2"      | 80 / 3"      | 100 / 4"   | 150 / 6"   | 200 / 8"   | 250 / 10"  | 300 / 12"  | 350 / 14"  | 400 / 16"  |
| <u>ب</u> |          | NG               | 150 / 6"     | 150 / 6"     | 200 / 8"   | 300 / 12"  | 500 / 20"  | 500 / 20"  | 600 / 24"  | 700 / 28"  | 800 / 32"  |
| pl.      | IIA      | P <sub>max</sub> | 4 / 58       | 4 / 58       | 3 / 43.5   | 3 / 43.5   | 1.6 / 23.2 | 1.6 / 23.2 | 1.1 / 15.9 | 1.1 / 15.9 | 1.1 / 15.9 |
| ы        | IIB3     | P <sub>max</sub> | 1.7 / 24.6   | 1.7 / 24.6   | 1.7 / 24.6 | 1.7 / 24.6 | 1.2 / 17.4 | 1.2 / 17.4 | 1.1 / 15.9 | 1.1 / 15.9 | 1.1 / 15.9 |

P<sub>max</sub> = maximum allowable operating pressure in bar / psi (absolute), higher operating pressure upon request.



| /SBW     |  |
|----------|--|
| 8/SBW- T |  |
|          |  |

| R/SBW- | ТΒ | - | - |
|--------|----|---|---|
|--------|----|---|---|

DR/SBW- H -



for stable detonations and deflagrations in a straight through design with shock absorber, bi-directional

## **PROTEGO® DR/SBW**

| Table 4: Specification of max. operating temperature |                                                |  |  |  |  |
|------------------------------------------------------|------------------------------------------------|--|--|--|--|
| ≤ 60°C / 140°F                                       | Tmaximum allowable operating temperature in °C |  |  |  |  |
| -                                                    | Classification                                 |  |  |  |  |

Higher operating temperatures upon request.

| Table 5: Material selection for housing  |                |                                    |                              |  |  |  |  |  |
|------------------------------------------|----------------|------------------------------------|------------------------------|--|--|--|--|--|
| Design                                   | А              | В                                  | С                            |  |  |  |  |  |
| Housing<br>Heating jacket (DR/SBW-H-(T)) | Steel<br>Steel | Stainless Steel<br>Stainless Steel | Hastelloy<br>Stainless Steel |  |  |  |  |  |
| Cover with shock absorber                | Steel          | Stainless Steel                    | Hastelloy                    |  |  |  |  |  |
| Gasket                                   | PTFE           | PTFE                               | PTFE                         |  |  |  |  |  |
| Flame arrester unit                      | A              | C, D                               | E                            |  |  |  |  |  |

Special materials upon request.

Special device with unidirectional shock absorber DR/SW-... from DN 50 resp. NG 150 available.

| Table 6: Material combinations of the flame arrester unit |                 |                 |                 |           |  |  |  |  |
|-----------------------------------------------------------|-----------------|-----------------|-----------------|-----------|--|--|--|--|
| Design                                                    | А               | С               | D               | E         |  |  |  |  |
| FLAMEFILTER <sup>®</sup> cage                             | Steel           | Stainless Steel | Stainless Steel | Hastelloy |  |  |  |  |
| FLAMEFILTER <sup>®</sup> *                                | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy |  |  |  |  |
| Spacer                                                    | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy |  |  |  |  |

\*The FLAMEFILTER<sup>®</sup> are also available in Tantalum, Inconel, Copper, etc., when the listed housing and casing materials are used. Special materials upon request.

# Table 7: Flange connection type EN 1092-1; Form B1 Other types upon request. ASME B16.5 CL 150 R.F. Other types upon request.

**Flow Capacity Charts** 

## PROTEGO® DR/SBW



The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."



for safety and environment

KA / 4 / 0720 / GB



for stable detonations and deflagrations in right angle design with shock absorber, uni-directional

## **PROTEGO® DR/ES-PTFE**



Connection to the protected side

#### **Function and Description**

Table 1: Dimensions

The PROTEGO<sup>®</sup> DR/ES-PTFE series in-line detonation flame arrester is distinguished by its unique resistance to adhesive and corrosive media. The use of fluoroplastics as a high-tech housing coating and as safety flame arrester element is unique throughout the world. The device represents a further development of PROTEGO<sup>®</sup> flame arresters DR/ES in a right angle design that have been used and proven for decades in industry. The device protects against deflagrations and stable detonations.

Once a detonation enters the flame arrester, energy is absorbed from the detonation shock wave by the integrated shock absorber (1) before the flame is extinguished in the narrow channel of the PTFE FLAMEFILTER<sup>®</sup> (3).

The PROTEGO<sup>®</sup> flame arrester unit (2) consists of several FLAMEFILTER<sup>®</sup> discs and spacers firmly held in the FLAMEFILTER<sup>®</sup> cage (4). The gap size and number of FLAMEFILTER<sup>®</sup> discs are determined by the operating data parameters of the mixture flowing in the line (pressure, temperature). The detonation arrester can be used for explosion group IIA (NEC group D). The standard design is approved at an operating temperature up to +60°C / 140°F and an absolute operating pressure acc. to table 3.

Type-approved according to ATEX Directive and EN 12874 as well as other international standards.

#### **Special Features and Advantages**

- build up of adhesive materials is prevented by the smooth surfaces
- minimum number of FLAMEFILTER<sup>®</sup> discs due to the effective shock absorber
- quick removal and installation of the complete PROTEGO<sup>®</sup> flame arrester unit and the individual FLAMEFILTER<sup>®</sup> discs in the cage
- the modular design enables each individual FLAMEFILTER<sup>®</sup> discs to be replaced
- offers protection against deflagrations and stable detonations
- · the right angle design saves pipe elbows
- · ideal for corrosive media
- less soiling of the device lowers service, operating and life-cycle cost

#### **Design Types and Specifications**

There are two different designs available:

Basic in-line detonation flame arrester

| DR/ES | - | PTFE |   | - |
|-------|---|------|---|---|
| DR/ES | - | PTFE | - | T |

Dimensions in mm / inches

In-line detonation flame arrester with integrated temperature sensor\* as additional protection against short time burning

\*Resistance thermometer for device group II, category (1) 2 (GII cat. (1) 2).

| To select the nominal size (DN), please use the flow capacity charts on the following pages |             |             |             |             |             |             |             |  |  |
|---------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|
| DN                                                                                          | 40 / 1 1⁄2" | 50 / 2"     | 65 / 2 1⁄2" | 80 / 3"     | 100 / 4"    | 125 / 5"    | 150 / 6"    |  |  |
| а                                                                                           | 153 / 6.02  | 155 / 6.10  | 198 / 7.80  | 200 / 7.87  | 250 / 9.84  | 332 / 13.07 | 335 / 13.19 |  |  |
| b                                                                                           | 183 / 7.20  | 185 / 7.28  | 223 / 8.78  | 225 / 8.86  | 290 / 11.42 | 357 / 14.06 | 360 / 14.17 |  |  |
| с                                                                                           | 335 / 13.19 | 335 / 13.19 | 420 / 16.53 | 420 / 16.53 | 490 / 19.29 | 590 / 23.23 | 590 / 23.23 |  |  |
| c1                                                                                          | 455 / 17.91 | 455 / 17.91 | 585 / 23.03 | 585 / 23.03 | 680 / 26.77 | 835 / 32.87 | 835 / 32.87 |  |  |
| d                                                                                           | 210 / 8.27  | 210 / 8.27  | 275 / 10.83 | 275 / 10.83 | 325 / 12.80 | 460 / 18.11 | 460 / 18.11 |  |  |
| е                                                                                           | 685 / 26.97 | 685 / 26.97 | 770 / 30.31 | 770 / 30.31 | 840 / 33.07 | 940 / 37.01 | 940 / 37.01 |  |  |
|                                                                                             |             |             |             |             |             |             |             |  |  |

All rights and modifications reserved in acc. with ISO 16016 - Current data sheet at www.protego.com

| Table 2: Selection of the explosion group |                     |                 |                                   |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|-----------------------------------|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) | Special opprovals upon request    |  |  |  |  |
| > 0,90 mm                                 | IIA                 | D               | - Special approvais upon request. |  |  |  |  |

| Table 3: Selection of max. operating pressure |                      |             |            |            |            |            |            |            |  |
|-----------------------------------------------|----------------------|-------------|------------|------------|------------|------------|------------|------------|--|
| ы.                                            | DN                   | 40 / 1 1⁄2" | 50 / 2"    | 65 / 2 ½"  | 80 / 3"    | 100 / 4"   | 125 / 5"   | 150 / 6"   |  |
| щQ                                            | IIA P <sub>max</sub> | 1.1 / 15.9  | 1.1 / 15.9 | 1.2 / 17.4 | 1.2 / 17.4 | 1.1 / 15.9 | 1.1 / 15.9 | 1.1 / 15.9 |  |

P<sub>max</sub> = maximum allowable operating pressure in bar / psi (absolute), higher operating pressure upon request.

| Table 4: Specification of max. operating temperature |                                                |                                             |  |  |  |  |  |
|------------------------------------------------------|------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| ≤ 60°C / 140°F                                       | Tmaximum allowable operating temperature in °C | Higher operating temperatures upon request  |  |  |  |  |  |
| -                                                    | Classification                                 | Higher operating temperatures upon request. |  |  |  |  |  |

| Table 5: Material selection for housing |                                    |                                 |  |  |  |  |
|-----------------------------------------|------------------------------------|---------------------------------|--|--|--|--|
| Design                                  | A                                  |                                 |  |  |  |  |
| Housing                                 | busing Steel with an ECTFE coating |                                 |  |  |  |  |
| Cover with shock absorber               | Steel with an ECTFE coating        | Special materials upon request. |  |  |  |  |
| Gasket                                  | PTFE                               |                                 |  |  |  |  |
| Flame arrester unit                     | A, B, C                            |                                 |  |  |  |  |

| Table 6: Material combinations of the flame arrester unit |                   |                   |                   |  |  |  |  |  |
|-----------------------------------------------------------|-------------------|-------------------|-------------------|--|--|--|--|--|
| Design                                                    | A                 | В                 | C                 |  |  |  |  |  |
| FLAMEFILTER <sup>®</sup> cage                             | PTFE *            | Hastelloy         | Stainless Steel   |  |  |  |  |  |
| FLAMEFILTER® *                                            | PTFE *            | PTFE *            | PTFE *            |  |  |  |  |  |
| Spacer                                                    | PEEK / ETFE / FEP | PEEK / ETFE / FEP | PEEK / ETFE / FEP |  |  |  |  |  |
| electrically conductive                                   |                   |                   |                   |  |  |  |  |  |

 Table 7: Flange connection type

 EN 1092-1; Form B1
 Other types upon request.

 ASME B16.5 CL 150 R.F.
 Other types upon request.





## PROTEGO® DR/ES-PTFE

\* P1.2



The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow V in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."



with integrated pressure relief valve for stable detonations and deflagrations in right-angle design with shock absorber, uni-directional

**PROTEGO® DR/ES-V** 



Set pressure: from +2.0 mbar up to +35 mbar from +0.8 inch W.C. up to +14 inch W.C. Higher or lower settings upon request.

right of lower settings upon reque

#### **Function and Description**

**Table 1: Dimensions** 

PROTEGO<sup>®</sup> DR/ES-V series uniquely combines the function of an in-line detonation flame arrester with the function of a pressure relief valve in one device. The device protects against deflagration and stable detonation. The weight-loaded pallet type valve (5) integrated in the shock absorber (1) of the in-line detonation flame arrester is designed as a pressure relief valve. The set pressure of the valve is adjusted in the factory and can range from 2 to 35 mbar (0.8 to 14 inch W.C.). After the pressure increases 40% from its set pressure, the valve completely opens to yield the maximum volumetric flow. If installed in vent headers connected to storage tanks, the valve pallet works as a check valve. This means that the product cannot flow back from the suction line into the tank. Although several functions are integrated in a single housing, the device is extremely easy to service, which is primarily due to the right-angle design.

Once a detonation enters the flame arrester, energy is absorbed from the detonation shock wave by the integrated shock

absorber, before the flame is extinguished in the narrow gaps of the FLAMEFILTER<sup>®</sup> (3). The flame suppression is guaranteed, regardless of the valve pallet position.

The PROTEGO<sup>®</sup> flame arrester unit (2) consists of several FLAMEFILTER<sup>®</sup> discs and spacers firmly held in the FLAMEFILTER<sup>®</sup> casing (4). The gap size and number of FLAMEFILTER<sup>®</sup> discs depend on the operating conditions of the flowing mixture (explosion group, pressure, temperature). This device is available for explosion groups from IIA to IIB3 (NEC group D to C MESG  $\geq$  0.65 mm).

The standard design is approved for an operating temperature of up to  $+60^{\circ}$ C /  $140^{\circ}$ F and absolute operating pressure up to 1.2 bar / 17.4 psi. **Devices with special approval for higher pressures and temperatures are available upon request.** Type-approved in accordance with the current ATEX Directive and EN ISO 16852, as well as other international standards.

#### **Special Features and Advantages**

- integration of in-line detonation flame arrester and pressure relief valve in one device
- · excellent tightness of the valve
- can be used as a detonation-proof valve in suction lines of storage tanks
- optimal use as an overflow valve in venting and gas supply lines
- low number of FLAMEFILTER<sup>®</sup> discs due to shock absorber technology
- quick removal and installation of the complete PROTEGO<sup>®</sup> flame arrester unit and the individual FLAMEFILTER<sup>®</sup> in the casing
- provides protection against deflagration and stable detonation
- advanced design for higher operating temperatures and pressures
- · cost-effective spare parts

#### **Design Types and Specifications**

There are two different designs available:

| Basic version of the detonation arrester with | DR/ES- V |
|-----------------------------------------------|----------|
| check valve                                   |          |

#### Detonation arrester with check valve and DR/ES- V - H

Dimensions in mm / inches

To select the nominal size (DN), please use the flow capacity charts on the following pages. 25/1/ DN 40 / 1 1/2" 50 / 2" 65 / 2 1/2" 80 / 3" 100 / 4" 125 / 5" 150 / 6" 200 / 8" 32 / 1 1/4" 125 / 4.92 155 / 6.10 198 / 7.80 200 / 7.87 250 / 9.84 332 / 13.07 335 / 13.19 425 / 16.73 153 / 6.02 а 225 / 8.86 357 / 14.06 b 140 / 5.51 183 / 7.20 185 / 7.28 223 / 8.78 290 / 11.42 360 / 14.17 505 / 19.88 305 / 12.01 305 / 12.01 575/22.64 575/22.64 237 / 9.33 395 / 15.55 395 / 15.55 460 / 18.11 863 / 33.98 С 345 / 13.58 410/16.14 410/16.14 530 / 20.87 530 / 20.87 615/24.21 790/31.10 790/31.10 1295 / 50.98 c1 d 149 / 5.87 210 / 8.27 210 / 8.27 275 / 10.83 275 / 10.83 325 / 12.80 460 / 18.11 460 / 18.11 620 / 24.41



| Table 2: Selection of the explosion group |                     |                 |                                 |  |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|---------------------------------|--|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) |                                 |  |  |  |  |  |
| > 0,90 mm                                 | IIA                 | D               | Special approvals upon request. |  |  |  |  |  |
| ≥ 0,65 mm                                 | IIB3                | С               |                                 |  |  |  |  |  |

| Table 3: Selection of max. operating pressure |                  |          |           |           |          |           |          |          |          |          |          |
|-----------------------------------------------|------------------|----------|-----------|-----------|----------|-----------|----------|----------|----------|----------|----------|
| Expl. Gr.                                     | DN               | 25 / 1   | 32 / 1 ¼" | 40 / 1 ½" | 50 / 2"  | 65 / 2 ½" | 80 / 3"  | 100 / 4" | 125 / 5" | 150 / 6" | 200 / 8" |
| IIA                                           | P <sub>max</sub> | 4.0/58.0 | 4.0/58.0  | 4.0/58.0  | 4.0/58.0 | 2.9/42.1  | 2.9/42.1 | 2.0/29.0 | 2.0/29.0 | 2.0/29.0 | 1.2/17.4 |
| IIB3                                          | P <sub>max</sub> | 3.0/43.5 | 3.0/43.5  | 2.0/29.0  | 2.0/29.0 | 2.0/29.0  | 2.0/29.0 | 1.5/21.7 | 1.4/20.3 | 1.4/20.3 | 1.1/15.9 |

P<sub>max</sub> = maximum allowable operating pressure in bar / psi (absolute); higher operating pressure upon request.

| Table 4: Specification of max. operating temperature |                                                |                                             |  |  |  |  |  |  |  |  |
|------------------------------------------------------|------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|--|
| ≤ 60°C / 140°F                                       | Tmaximum allowable operating temperature in °C | Higher operating temperatures upon request  |  |  |  |  |  |  |  |  |
| -                                                    | Classification                                 | Higher operating temperatures upon request. |  |  |  |  |  |  |  |  |
|                                                      |                                                |                                             |  |  |  |  |  |  |  |  |

| Table 5: Material selection for housing |                 |                                    |                              |                                |  |  |  |  |  |  |  |
|-----------------------------------------|-----------------|------------------------------------|------------------------------|--------------------------------|--|--|--|--|--|--|--|
| Design                                  | В               | С                                  | D                            |                                |  |  |  |  |  |  |  |
| Design<br>Heating jacket (DR/ES-V-H)    | Steel<br>Steel  | Stainless Steel<br>Stainless Steel | Hastelloy<br>Stainless Steel | The housing and the cover with |  |  |  |  |  |  |  |
| Cover with shock absorber               | Steel           | Stainless Steel                    | Hastelloy                    | shock absorber can also be     |  |  |  |  |  |  |  |
| Gaskets                                 | PTFE            | PTFE                               | PTFE                         | coating.                       |  |  |  |  |  |  |  |
| Valve seat                              | Stainless Steel | Stainless Steel                    | Stainless Steel              |                                |  |  |  |  |  |  |  |
| Flame arrester unit                     | A               | C, D                               | E                            |                                |  |  |  |  |  |  |  |

Special materials upon request.

| Table 6: Material combinations of the flame arrester unit |                 |                 |                 |           |                                  |  |  |  |  |  |  |
|-----------------------------------------------------------|-----------------|-----------------|-----------------|-----------|----------------------------------|--|--|--|--|--|--|
| Design                                                    | А               | С               | D               | E         | *The FLAMEFILTER® is also        |  |  |  |  |  |  |
| FLAMEFILTER <sup>®</sup> casing                           | Steel           | Stainless Steel | Stainless Steel | Hastelloy | available in Tantalum, Inconel,  |  |  |  |  |  |  |
| FLAMEFILTER® *                                            | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy | housing and casing materials are |  |  |  |  |  |  |
| Spacer                                                    | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy | used.                            |  |  |  |  |  |  |
|                                                           |                 |                 |                 |           |                                  |  |  |  |  |  |  |

Special materials upon request.

| Table 7: Material selection for valve pallet |                                    |                                     |                                 |  |  |  |  |  |  |
|----------------------------------------------|------------------------------------|-------------------------------------|---------------------------------|--|--|--|--|--|--|
| Design                                       | А                                  | В                                   | С                               |  |  |  |  |  |  |
| Pressure range                               | 1                                  | I                                   | III                             |  |  |  |  |  |  |
| Set pressure (mbar)<br>[inch W.C.]           | +2.0 up to +3.5<br>+0.8 up to +1.4 | >+3.5 up to +14<br>>+1.4 up to +5.6 | >+14 up to 35<br>>+5.6 up to 14 |  |  |  |  |  |  |
| Valve pallet                                 | Aluminum                           | Stainless Steel                     | Stainless Steel                 |  |  |  |  |  |  |
| Sealing                                      | FEP                                | FEP                                 | Metal to Metal                  |  |  |  |  |  |  |

## Table 8: Flange connection type

#### EN 1092-1; Form B1

ASME B16.5 CL 150 R.F.

Other types upon request.



for safety and environment



**Flow Capacity Charts** 

## PROTEGO® DR/ES-V



**Opening pressure** = set pressure plus overpressure

Overpressure = pressure increase over the set pressure

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig.

Volume flow  $\dot{V}$  in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."

**Flow Capacity Charts** 

## PROTEGO® DR/ES-V





for safety and environment



for stable detonations and deflagrations in right angle design with shock absorber, unidirectional

## PROTEGO® DR/ES



#### **Function and Description**

The PROTEGO<sup>®</sup> DR/ES in-line detonation flame arrester has been used for decades in industrial plant construction because its right angle design offers advantages towards maintenance and costs in comparison to most straight designs.

Once a detonation enters the device, energy is absorbed from the detonation shock wave by the integrated shock absorber (1) before the flame is extinguished in the narrow gaps of the FLAMEFILTER<sup>®</sup> (3).

The PROTEGO<sup>®</sup> flame arrester unit (2) consists of several FLAMEFILTER<sup>®</sup> discs and spacers firmly held in the FLAME-FILTER<sup>®</sup> cage (4). The gap size and number of FLAMEFILTER<sup>®</sup> discs are determined by the operating data of the mixture flowing in the line (explosion group, pressure, temperature). This device is approved for explosion groups from IIA to IIB3 (NEC group D to C MESG  $\geq$  0.65 mm). The standard design is approved at an operating temperature up to  $+60^{\circ}$ C /  $140^{\circ}$ F and an absolute operating pressure up to 1.2 bar / 17.4 psi. Devices with special approvals can be obtained for higher pressures and higher temperatures upon request.

Type-approved in accordance with the current ATEX Directive and EN ISO 16852 as well as other international standards.

#### **Special Features and Advantages**

- minimum number of FLAMEFILTER<sup>®</sup> discs due to the effective shock absorber
- quick removal and installation of the complete PROTEGO<sup>®</sup> flame arrester unit and FLAMEFILTER<sup>®</sup> discs in the cage
- due to modular design the FLAMEFILTER<sup>®</sup> discs can be individually replaced
- · the right angle design saves pipe elbows
- extended application range for higher operating temperatures and pressures
- minimum pressure loss and hence low operating and lifecycle cost
- · cost efficient spare parts

#### **Design Types and Specifications**

There are four different designs available:

| Basic in-line detonation flame arrester                                                                                           | DR/ES            |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------|
| In-line detonation flame arrester with inte-<br>grated temperature sensor* as additional<br>protection against short time burning | DR/ES-T          |
| In-line detonation flame arrester with heating jacket                                                                             | DR/ES- [H]       |
| In-line detonation flame arrester with inte-<br>grated temperature sensor* against short<br>time burning and heating jacket       | DR/ES- [H] - [T] |
| *Resistance thermometer for device group II,                                                                                      |                  |

category (1) 2 (GII cat. (1) 2)

| Table 1: Dimensions         Dimensions in mm / inches                                       |           |             |             |           |           |           |           |           |           |            |  |  |
|---------------------------------------------------------------------------------------------|-----------|-------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|--|--|
| To select the nominal size (DN), please use the flow capacity charts on the following pages |           |             |             |           |           |           |           |           |           |            |  |  |
| DN                                                                                          | 25 / 1"   | 32 / 1 1⁄4" | 40 / 1 1⁄2" | 50 / 2"   | 65 / 2 ½" | 80 / 3"   | 100 / 4"  | 125 / 5"  | 150 / 6"  | 200 / 8"   |  |  |
| а                                                                                           | 125/4.92  | 125/4.92    | 153/6.02    | 155/6.10  | 198/7.80  | 200/7.87  | 250/9.84  | 332/13.07 | 335/13.19 | 425/16.73  |  |  |
| b                                                                                           | 140/5.51  | 140/5.51    | 183/7.20    | 185/7.28  | 223/8.78  | 225/8.86  | 290/11.42 | 357/14.06 | 360/14.07 | 505/19.88  |  |  |
| с                                                                                           | 210/8.27  | 210/8.27    | 290/11.42   | 290/11.42 | 365/14.37 | 365/14.37 | 440/17.32 | 535/21.06 | 535/21.06 | 810/31.89  |  |  |
| c1                                                                                          | 285/11.22 | 285/11.22   | 395/15.55   | 395/15.55 | 500/19.69 | 500/19.69 | 595/23.43 | 750/29.53 | 750/29.53 | 1230/48.43 |  |  |
| d                                                                                           | 150/5.91  | 150/5.91    | 210/8.27    | 210/8.27  | 275/10.83 | 275/10.83 | 325/12.80 | 460/18.11 | 460/18.11 | 620/24.41  |  |  |
| е                                                                                           | 495/19.49 | 495/19.49   | 600/23.62   | 600/23.62 | 705/27.76 | 705/27.76 | 795/31.30 | 950/37.40 | 950/37.40 | 1435/56.50 |  |  |

| Table 2: Selection of the explosion group |                     |                 |                                |  |  |  |  |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|--------------------------------|--|--|--|--|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) |                                |  |  |  |  |  |  |  |  |
| > 0,90 mm                                 | IIA                 | D               | Special approvals upon request |  |  |  |  |  |  |  |  |
| ≥ 0,65 mm                                 | IIB3                | С               |                                |  |  |  |  |  |  |  |  |

| Та   | Table 3: Selection of max. operating pressure |                  |          |           |           |          |           |          |          |          |          |          |  |
|------|-----------------------------------------------|------------------|----------|-----------|-----------|----------|-----------|----------|----------|----------|----------|----------|--|
|      |                                               | DN               | 25 / 1"  | 32 / 1 ¼" | 40 / 1 ½" | 50 / 2"  | 65 / 2 ½" | 80 / 3"  | 100 / 4" | 125 / 5" | 150 / 6" | 200 / 8" |  |
| Gr.  | IIA                                           | P <sub>max</sub> | 4.0/58.0 | 4.0/58.0  | 4.0/58.0  | 4.0/58.0 | 2.9/42.1  | 2.9/42.1 | 2.0/29.0 | 2.0/29.0 | 2.0/29.0 | 1.2/17.4 |  |
| Expl | IIB3                                          | P <sub>max</sub> | 3.0/43.5 | 3.0/43.5  | 2.0/29.0  | 2.0/29.0 | 2.0/29.0  | 2.0/29.0 | 1.5/21.7 | 1.4/20.3 | 1.4/20.3 | 1.1/15.9 |  |

P<sub>max</sub> = maximum allowable operating pressure in bar / psi (absolute), higher operating pressure upon request

| Table 4: Specification of max. operating temperature |                                                |                                            |  |  |  |  |  |  |  |  |
|------------------------------------------------------|------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|--|--|
| ≤ 60°C / 140°F                                       | Tmaximum allowable operating temperature in °C |                                            |  |  |  |  |  |  |  |  |
| - Designation                                        |                                                | nigher operating temperatures upor request |  |  |  |  |  |  |  |  |
|                                                      |                                                |                                            |  |  |  |  |  |  |  |  |
| Table 5: Material selection for boucing              |                                                |                                            |  |  |  |  |  |  |  |  |

| Table J. Material Selection for In      | ousing         |                                    |                              |                                                                                |
|-----------------------------------------|----------------|------------------------------------|------------------------------|--------------------------------------------------------------------------------|
| Design                                  | В              | С                                  | D                            | * for devices exposed to elevated, tempera-                                    |
| Housing<br>Heating jacket (DR/ES-H-(T)) | Steel<br>Steel | Stainless Steel<br>Stainless Steel | Hastelloy<br>Stainless Steel | tures above 150°C / 302°F, gaskets made of PTFE.The housing and cover with the |
| Cover with shock absorber               | Steel          | Stainless Steel                    | Hastelloy                    | shock absorber can also be delivered in                                        |
| O-Ring                                  | FPM*           | PTFE                               | PTFE                         | steer with an ECTFE coating.                                                   |
| Flame arrester unit                     | А              | C, D                               | E                            | Special materials upon request                                                 |

| Table 6 | : Material | combi | nations | of the | flame | arrester | uni | t |
|---------|------------|-------|---------|--------|-------|----------|-----|---|
|         |            |       |         |        |       |          |     |   |

| Design                        | А               | С               | D               | E         | * the ELAMEEII TER® are also          |
|-------------------------------|-----------------|-----------------|-----------------|-----------|---------------------------------------|
| FLAMEFILTER <sup>®</sup> cage | Steel           | Stainless Steel | Stainless Steel | Hastelloy | available in the materials Tantalum,  |
| FLAMEFILTER® *                | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy | Inconel, Copper, etc. when the listed |
| Spacer                        | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy | nousing and cage materials are used.  |
|                               |                 |                 |                 |           |                                       |

Special materials upon request

## Table 7: Flange connection type

EN 1092-1; Form B1

ASME B16.5; 150 lbs RFSF

other types upon request





Flow Capacity Charts

## PROTEGO® DR/ES



The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

## PROTEGO® DR/ES



for safety and environment



Flow Capacity Charts (liquid)

## PROTEGO® DR/ES





pressure drop Δp (mbar)



Conversion: 
$$\dot{V}_{liquid} = \dot{V}_{water} * \sqrt{\frac{\rho_{water}}{\rho_{liquid}}}$$

The volume flow  $\dot{V}$  in m<sup>3</sup>/h was determined with water according to DIN EN 60534 at a temperature  $T_n = 15^{\circ}C$  and an atmospheric pressure  $p_n = 1,013$  bar, kinematic viscosity  $v = 10^{-6} \text{ m}^2/\text{s}$ 



## for stable detonations and deflagrations in a straight through design with shock absorber, bidirectional

## PROTEGO<sup>®</sup> DA-SB-PTFE



#### **Function and Description**

The in-line detonation flame arresters type PROTEGO<sup>®</sup> DA-SB-PTFE are the latest generation of flame arresters and are distinguished by its unique resistance to adhesive and corrosive media. The use of fluoroplastics as a high-tech housing coating and as solid material for the flame arrester element is unique throughout the world.

The speed of incoming detonations is highly reduced by the effective shock absorber (1) and result in an equal pressure distribution across the FLAMEFILTER<sup>®</sup> surface. This improves the flame extinction in the narrow gaps of the original PTFE-FLAMEFILTER<sup>®</sup> (3).

The devices are symmetrical and offer bidirectional flame arresting for deflagrations and stable detonations. The arrester essentially consists of two coated housing parts (4), two coated shock absorbers and the PROTEGO® flame arrester unit (2) in the center. The PROTEGO® flame arrester unit is modular and consists of several FLAMEFILTER® discs and spacers firmly held in a FLAMEFILTER® cage. The number of FLAMEFILTER® discs and their gap size depends on the arrester's conditions of use.

The detonation arrester PROTEGO<sup>®</sup> DA-SB-PTFE can be used for explosion group IIA (NFPA group D). The standard design is approved at an operating temperature up to  $+60^{\circ}$ C / 140°F. The maximum allowable operating pressure depends on nominal diameter (DN) and nominal size (NG) and amounts to a maximum of 2.4 bar / 34.8 psi absolute (for DN50 / 2" see table 3). Type-approved according to ATEX Directive and EN ISO 16852 as well as other international standards.

#### **Special Features and Advantages**

- build up of adhesive materials is prevented by the smooth surfaces
- aplication especially for corrosive and polymerising media
- minimum number of FLAMEFILTER<sup>®</sup> discs due to the effective shock absorber
- different series allow increase of FLAMEFILTER<sup>®</sup> size for given flange connection resulting in lower pressure drop across the device
- service-friendly design
- the modular design enables each individual FLAMEFILTER<sup>®</sup> to be replaced
- bidirectional operation as well as any direction of flow and installation position
- · Installation of temperature sensors is possible
- less soiling of the device lowers service, operating and life-cycle cost
- minimum pressure loss and associated low operating and life-cycle cost

#### **Design Types and Specifications**

There are three different designs available:

Basic in-line detonation flame arrester DA-SB-PTFE - - DA-SB-PTFE - T In-line detonation flame arrester with integrated temperature sensor\* as additional protection against short time burning from one side In-line detonation flame arrester with two integrated temperature sensors\* for additional protection against short time burning from both sides

Additional special flame arresters upon request.

\*Resistance thermometer for device group II, category (1) 2 (GII cat. (1) 2)

All rights and modifications reserved in acc. with ISO 16016 - Current data sheet at www.protego.com

| Table 1: Dimensions         Dimensions in mm / inches |                              |                               |                               |                      |  |  |  |  |  |
|-------------------------------------------------------|------------------------------|-------------------------------|-------------------------------|----------------------|--|--|--|--|--|
| To select no                                          | minal width/nominal size (NG | /DN) - combination, please us | se the flow capacity chart on | the following pages. |  |  |  |  |  |
|                                                       |                              |                               |                               |                      |  |  |  |  |  |
| NG                                                    | 150 / 6"                     | 150 / 6"                      | 200 / 8"                      | 300 / 12"            |  |  |  |  |  |
| DN                                                    | 50 / 2"                      | 80 / 3"                       | 80 / 3"                       | 100 / 4"             |  |  |  |  |  |
| а                                                     | 287 / 11.30                  | 287 / 11.30                   | 342 / 13.46                   | 447 / 17.60          |  |  |  |  |  |
| b                                                     | 407 / 15.75                  | 407 / 15.75                   | 497 / 19.57                   | 645 / 25.39          |  |  |  |  |  |
| с                                                     | 400 / 15.75                  | 400 / 15.75                   | 530 / 20.87                   | 530 / 20.87          |  |  |  |  |  |

| Table 2: Selection of the explosion group |                     |                 |                                 |  |  |  |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|---------------------------------|--|--|--|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) | Special opprovale upon request  |  |  |  |  |  |  |  |
| > 0,90 mm                                 | IIA                 | D               | Special approvals upon request. |  |  |  |  |  |  |  |

| Table            | Table 3: Selection of max. operating pressure |            |            |            |  |  |  |  |  |  |
|------------------|-----------------------------------------------|------------|------------|------------|--|--|--|--|--|--|
| NG               | 150 / 6"                                      | 150 / 6"   | 200 / 8"   | 300 / 12"  |  |  |  |  |  |  |
| DN               | 50 / 2"                                       | 80 / 3"    | 80 / 3"    | 100 / 4"   |  |  |  |  |  |  |
| P <sub>max</sub> | 2.4 / 34.8                                    | 1.1 / 15.9 | 1.2 / 17.4 | 1.2 / 17.4 |  |  |  |  |  |  |

P<sub>max</sub> = allowable operating pressure in bar / psi absolut, higher operating pressure upon request.

| Table 4: Specification of max. operating temperature |                                                |                                             |  |  |  |  |  |  |  |  |
|------------------------------------------------------|------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|--|
| ≤ 60°C / 140°F                                       | Tmaximum allowable operating temperature in °C | Higher operating temperatures upon request  |  |  |  |  |  |  |  |  |
| -                                                    | Classification                                 | nigher operating temperatures upon request. |  |  |  |  |  |  |  |  |

| Table 5: Material for housing |                             |                                 |  |  |  |  |  |  |  |
|-------------------------------|-----------------------------|---------------------------------|--|--|--|--|--|--|--|
| Design                        | A                           |                                 |  |  |  |  |  |  |  |
| Housing                       | Steel with an ECTFE coating |                                 |  |  |  |  |  |  |  |
| Shock absorber                | Steel with an ECTFE coating | Special materials upon request. |  |  |  |  |  |  |  |
| Gasket                        | PTFE                        |                                 |  |  |  |  |  |  |  |
| Flame arrester unit           | A, B, C                     |                                 |  |  |  |  |  |  |  |

| Table 6: Material combinations of the flame arrester unit |                             |                   |                   |  |  |  |  |  |  |
|-----------------------------------------------------------|-----------------------------|-------------------|-------------------|--|--|--|--|--|--|
| Design                                                    | Α                           | В                 | C                 |  |  |  |  |  |  |
| FLAMEFILTER <sup>®</sup> cage                             | Steel with an ECTFE coating | Hastelloy         | Stainless Steel   |  |  |  |  |  |  |
| Spider rings                                              | Steel with an ECTFE coating | Hastelloy         | Stainless Steel   |  |  |  |  |  |  |
| FLAMEFILTER® *                                            | PTFE*                       | PTFE*             | PTFE*             |  |  |  |  |  |  |
| Spacer                                                    | PEEK / ETFE / FEP           | PEEK / ETFE / FEP | PEEK / ETFE / FEP |  |  |  |  |  |  |

Special materials upon request.

\* electrically conductive

 Table 7: Flange connection type

EN 1092-1; Form B1

ASME B16.5 CL 150 R.F.

Other types upon request.





**Flow Capacity Chart** 

## PROTEGO® DA-SB-PTFE



The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."



# for stable detonations and deflagrations in a straight through design with shock tube, bi-directional

servicing (temperature sensor)



## PROTEGO® DA-SB



#### **Function and Description**

The in-line detonation flame arresters type PROTEGO® DA-SB are the newest generation of flame arresters. Based on flow and explosion dynamic calculations as well as decades of field tests, a product line was developed that offers minimum pressure losses with maximum safety. The flame arrester uses the Shock Wave Guide Tube Effect (SWGTE) to separate the flame front and shock wave. The result is an in-line detonation arrester without a classic shock absorber, which minimizes the use of FLAMEFILTER® discs.

The devices are symmetrical and offer bi-directional flame arresting for deflagrations and stable detonations. The arrester essentially consists of two housing parts with an integrated shock tube (1) and the PROTEGO® flame arrester unit (2) in the center. The PROTEGO® flame arrester unit is modular and consists of several FLAMEFILTER® discs (3) and spacers firmly held in a FLAMEFILTER® casing. The number of FLAMEFILTER® discs and their gap size depends on the arrester's intended use.

By specifying the operating conditions, such as the temperature, pressure, explosion group, and the composition of the fluid, the optimum detonation arrester can be selected from a series of approved devices. The PROTEGO<sup>®</sup> DA-SB flame arresters are available for all explosion groups.

The standard design can be used with an operating temperature of up to  $+60^{\circ}$ C /  $140^{\circ}$ F and an absolute operating pressure up to bar / 15.9 psi. Numerous devices with special approval for higher pressures (see table 3) and higher temperatures are available upon request. Type-approved in accordance with the current ATEX Directive and EN ISO 16852, as well as other international standards.

#### **Special Features and Advantages**

- optimized performance due to the patented Shock Wave Guide Tube Effect (SWGTE)
- low number of FLAMEFILTER<sup>®</sup> discs due to the patented Shock Wave Guide Tube Effect (SWGTE)
- modular design enables replacement of the individual FLAMEFILTER<sup>®</sup> discs
- different designs allow scalable pressure loss over the area of the FLAMEFILTER<sup>®</sup>
- · maintenance-friendly design
- advanced design for higher operating temperatures and pressures
- bi-directional operation, as well as any flow direction and installation position
- installation of temperature sensors possible
- minimal pressure loss resulting in low operating and lifecycle costs
- · Cost-effective spare parts
- installation of stabilized FLAMEFILTER<sup>®</sup> possible
- use of maintenance-friendly PROTEGO<sup>®</sup> flame arrester unit possible

#### **Design Types and Specifications**

There are four different designs available:

Basic in-line detonation flame arrester

In-line detonation flame arrester with integrated temperature sensor\* as additional protection against short-time burning from one side

In-line detonation flame arrester with two integrated temperature sensors\* for additional protection against short-time burning from both sides

In-line detonation flame arrester with heating **DA-SB - H** jacket

Additional special flame arresters upon request.

\*Resistance thermometer for device group II, category (1) 2 (GII cat. (1) 2)

DA-SB - - - -

DA-SB - T - -

| DA-SB- | ΤВ | - | - |  |
|--------|----|---|---|--|
|--------|----|---|---|--|





New PROTEGO<sup>®</sup> Flame Arrester Unit unique maintenance friendly design (Flyer pdf)

| Table 1: Dimensions                                                                                                   |                 |                |                    |                |                |                | Dimensions in mm / inches |                                                                                                     |                    |                    |                 |                 |                  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------|----------------|--------------------|----------------|----------------|----------------|---------------------------|-----------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------|-----------------|------------------|
| To select nominal width/nominal size (NG/DN) combination, please use the flow capacity charts on the following pages. |                 |                |                    |                |                |                | Additio<br>improv         | Additional nominal width/nominal size (NG/DN) combinations for improved flow capacity upon request. |                    |                    |                 |                 |                  |
| sta                                                                                                                   | andard (special | sizes up       | to NG 200          | 00/80", C      | N 1000/        | 40" availa     | able)                     |                                                                                                     |                    |                    |                 |                 |                  |
|                                                                                                                       | NG              | 150<br>6"      | 150<br>6"          | 200<br>8"      | 300<br>12"     | 400<br>16"     | 500<br>20"                | 600<br>24"                                                                                          | 700<br>28"         | 800<br>32"         | 1000<br>40"     | 1200<br>48"     | 1600<br>64"      |
|                                                                                                                       | DN              | ≤ 50<br>2"     | 65, 80<br>2 ½", 3" | ≤ 100<br>4"    | ≤ 150<br>6"    | ≤ 200<br>8"    | ≤ 250<br>10"              | ≤ 300<br>12"                                                                                        | ≤ 350<br>14"       | ≤ 400<br>16"       | ≤ 500<br>20"    | ≤ 600<br>24"    | 800<br>32"       |
|                                                                                                                       | а               | 285 /<br>11.22 | 285 /<br>11.22     | 340 /<br>13.39 | 445 /<br>17.52 | 565 /<br>22.24 | 670 /<br>26.38            | 780 /<br>30.71                                                                                      | 895 /<br>35.24     | 1015 /<br>39.96    | 1230 /<br>48.43 | 1455 /<br>57.28 | 1915 /<br>75.39  |
|                                                                                                                       | IIA-P1,1        | 388 /<br>15.28 | 388 /<br>15.28     | 476 /<br>18.74 | 626 /<br>24.65 | 700 /<br>27.56 | 800 /<br>31.50*           | 1000 /<br>39.37*                                                                                    | 1200 /<br>47.24    | 1400 /<br>55.12    | 1600 /<br>62.99 | 1800 /<br>70.87 | 2200/<br>86.61** |
|                                                                                                                       | IIA-P1,4-X3     | 400 /<br>15.75 | 400 /<br>15.75     | 488 /<br>19.21 | 626 /<br>24.65 | 724 /<br>28.50 | 800 /<br>31.50            | 1000 /<br>39.37                                                                                     | 1200 /<br>47.24    | 1400 /<br>55.12    |                 |                 |                  |
| b                                                                                                                     | IIB3-P1,1       | 400 /<br>15.75 | 412 /<br>16.22     | 500 /<br>19.69 | 650 /<br>25.59 | 724 /<br>28.50 | 824 /<br>32.44            | 1000 /<br>39.37                                                                                     | 1200 /<br>47.24    | 1400 /<br>55.12    | 1600 /<br>62.99 | 1800 /<br>70.87 |                  |
|                                                                                                                       | IIB3-P1,4-X3    | 412 /<br>16.22 | 412 /<br>16.22     | 512 /<br>20.16 | 650 /<br>25.59 | 724 /<br>28.50 | 824 /<br>32.44            | 1000 /<br>39.37                                                                                     | 1200 /<br>47.24    | 1400 /<br>55.12    |                 |                 |                  |
|                                                                                                                       | IIC-P1,1        | 400 /<br>15.75 | 400 /<br>15.75     | 500 /<br>19.69 | 638 /<br>25.12 | 700 /<br>27.56 | 788 /<br>31.02            | 1000 /<br>39.37***                                                                                  | 1200 /<br>47.24*** | 1400 /<br>55.12*** |                 |                 |                  |
|                                                                                                                       | С               | 500 /<br>19.69 | 500 /<br>19.69     | 520 /<br>20.47 | 570 /<br>22.44 | 620 /<br>24.41 | 670 /<br>26.38            | 720 /<br>28.35                                                                                      | 770 /<br>30.31     | 820 /<br>32.28     | 950 /<br>37.40  | 1050 /<br>41.34 | 1250 /<br>49.21  |

\* dimension b only for P1.4 / 20.3

\*\* dimension b only for P1.2 / 17.4

\*\*\* EN 12874

| Table 2: Selection of the explosion group |                     |                 |                                   |  |  |  |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|-----------------------------------|--|--|--|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) |                                   |  |  |  |  |  |  |  |
| > 0,90 mm                                 | IIA                 | D               | Special approvals upon request    |  |  |  |  |  |  |  |
| ≥ 0,65 mm                                 | IIB3                | С               | - Special approvais upon request. |  |  |  |  |  |  |  |
| < 0,50 mm                                 | IIC                 | В               | -                                 |  |  |  |  |  |  |  |

| Та     | Table 3: Selection of max. operating pressure |                  |               |                    |               |               |               |               |                 |                 |                 |               |               |               |
|--------|-----------------------------------------------|------------------|---------------|--------------------|---------------|---------------|---------------|---------------|-----------------|-----------------|-----------------|---------------|---------------|---------------|
|        |                                               | NG               | 150<br>6"     | 150<br>6"          | 200<br>8"     | 300<br>12"    | 400<br>16"    | 500<br>20"    | 600<br>24"      | 700<br>28"      | 800<br>32"      | 1000<br>40"   | 1200<br>48"   | 1600<br>64"   |
|        |                                               | DN               | ≤ 50<br>2"    | 65, 80<br>2 ½", 3" | ≤ 100<br>4"   | ≤ 150<br>6"   | ≤ 200<br>8"   | ≤ 250<br>10"  | ≤ 300<br>12"    | ≤ 350<br>14"    | ≤ 400<br>6"     | ≤ 500<br>20"  | ≤ 600<br>24"  | 800<br>32"    |
|        | IIA                                           | P <sub>max</sub> | 2.1 /<br>30.5 | 2.1 /<br>30.5      | 2.1 /<br>30.5 | 2.1 /<br>30.5 | 2.1 /<br>30.5 | 2.1 /<br>30.5 | 1.4 /<br>20.3   | 1.4 /<br>20.3   | 1.4 /<br>20.3   | 1.1 /<br>15.9 | 1.1 /<br>15.9 | 1.2 /<br>17.4 |
| xpl. G | IIB3                                          | P <sub>max</sub> | 1.4 /<br>20.3 | 1.4 /<br>20.3      | 1.4 /<br>20.3 | 1.8 /<br>26.1 | 1.8 /<br>26.1 | 1.8 /<br>26.1 | 1.8 /<br>26.1   | 1.4 /<br>20.3   | 1.4 /<br>20.3   | 1.1 /<br>15.9 | 1.1 /<br>15.9 |               |
| ш      | IIC                                           | P <sub>max</sub> | 2.2 /<br>31.9 | 2.2 /<br>31.9      | 1.1 /<br>15.9 | 1.1 /<br>15.9 | 1.1 /<br>15.9 | 1.1 /<br>15.9 | 1.1 / *<br>15.9 | 1.1 / *<br>15.9 | 1.1 / *<br>15.9 |               |               |               |

P<sub>max</sub> = maximum allowable operating pressure in bar / psi absolut; higher operating pressure upon request.

In-between size up to  $\mathsf{P}_{\max}$  upon request.

\* Capacity charts upon request.





for stable detonations and deflagrations in a straight through design with shock tube, bi-directional

**PROTEGO® DA-SB** 

| Table 4: Specification of max. operating temperature |                 |                                                                  |                                             |  |  |  |  |  |  |
|------------------------------------------------------|-----------------|------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|
| ≤ 60°C / 140°F                                       | ≤ 200°C / 392°F | Tmaximum allowable operating temperature in $^{\circ}\mathrm{C}$ | Higher operating temperatures upon request  |  |  |  |  |  |  |
| -                                                    | X3              | Classification                                                   | nigher operating temperatures upon request. |  |  |  |  |  |  |

| Table 5: Material selection for housing |                |                                    |                              |                                        |  |  |  |  |
|-----------------------------------------|----------------|------------------------------------|------------------------------|----------------------------------------|--|--|--|--|
| Design                                  | А              | В                                  | С                            |                                        |  |  |  |  |
| Housing<br>Heating jacket (DA-SB-(T)-H) | Steel<br>Steel | Stainless Steel<br>Stainless Steel | Hastelloy<br>Stainless Steel | The housing is also available in Steel |  |  |  |  |
| Gasket                                  | PTFE           | PTFE                               | PTFE                         | with ECTFE coating.                    |  |  |  |  |
| Flame arrester unit                     | A, B           | B, C, D                            | D                            |                                        |  |  |  |  |

Special materials upon request.

| Table 6: Material combinations of the flame arrester unit |                 |                 |                 |           |                                        |  |  |  |  |
|-----------------------------------------------------------|-----------------|-----------------|-----------------|-----------|----------------------------------------|--|--|--|--|
| Design                                                    | А               | В               | С               | D         | *The FLAMEFILTER <sup>®</sup> are also |  |  |  |  |
| FLAMEFILTER <sup>®</sup> casing                           | Steel           | Stainless Steel | Stainless Steel | Hastelloy | available in Tantalum, Inconel,        |  |  |  |  |
| FLAMEFILTER® *                                            | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy | Copper, etc., when the listed housing  |  |  |  |  |
| Spacer                                                    | Stainless Steel | Stainless Steel | Hastelloy       | Hastelloy | and casing materials are used.         |  |  |  |  |

Special materials upon request.

| Table 7: Flange connection type |                           |
|---------------------------------|---------------------------|
| EN 1092-1; Form B1              | Other types upon request  |
| ASME B16.5 CL 150 R.F.          | Other types upon request. |

**Flow Capacity Charts** 

## **PROTEGO® DA-SB**



The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."



for safety and environment





The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."





## Eccentric In-Line Detonation Flame Arrester



for stable detonations and deflagrations in a straight through design, bi-directional

## **PROTEGO® DA-E**



Connection to the protected side (only for type DA-E-T-...)

#### **Function and Description**

The PROTEGO<sup>®</sup> DA-E series of detonation arresters are distinguished by its eccentric housing shape. When condensate accumulates within the PROTEGO<sup>®</sup> flame arrester unit, the design allows the liquid to drain without collecting large amounts in the housing. The eccentric design of the device has distinctive advantages over the classic flame arresters when installed at lower depths.

The detonation arrester is symmetrical and offers bi-directional flame arresting. The arrester essentially consists of two housing parts (1) and the PROTEGO® flame arrester unit (2) in the center. The PROTEGO® flame arrester unit consists of several FLAMEFILTER® discs (3) and spacers firmly held in a FLAMEFILTER® casing. The number of FLAMEFILTER® discs and their gap size depends on the arrester's intended use. By specifying the operating conditions, such as the temperature, pressure, explosion group, and the composition of the fluid, the optimum detonation arrester can be selected. The PROTEGO® DA-E series of flame arresters are available for explosion groups IIA to IIB3 (NEC Group D to C MESG  $\geq$  0.65 mm).

The standard design can be used with an operating temperature of up to  $+60^{\circ}$ C /  $140^{\circ}$ F and an absolute operating pressure acc. to table 3. Devices with special approval for higher pressures and higher temperatures are available upon request.

The standard design can be used with an operating temperature of up to  $+60^{\circ}$ C /  $140^{\circ}$ F and an absolute operating pressure acc. to table 3. **Devices with special approval for higher pressures and higher temperatures are available upon request.** 

Type-approved in accordance with the current ATEX Directive and EN ISO 16852, as well as other international standards.

#### **Special Features and Advantages**

- eccentric design prevents condensate build-up
- modular design enables replacement of the individual FLAMEFILTER<sup>®</sup> discs
- easy maintenance with fast assembly and disassembly of the FLAMEFILTER<sup>®</sup>
- advanced design allows for installation close to ground level
- bi-directional operation, as well as any flow direction and installation position
- provides protection against deflagration and stable detonation
- · installation of temperature sensors possible
- · cost-effective spare parts

#### **Design Types and Specifications**

Basic design of the detonation arrester

There are three different designs available:

| DA | -E- | - |
|----|-----|---|
|    | _   |   |

In-line detonation flame arrester with integrated **DA-E-**T temperature sensor\* as additional protection against short-time burning of one side

Detonation arrester with two integrated temperature sensors\* as additional protection against short-time burning from both sides

Additional special arresters upon request.

\*Resistance thermometer for device group II, category (1) 2 (GII cat. (1) 2)







| Tal   | ole 1: I | Dimer  | isions                    |                           |               |               |               |               |               |               | Di            | mension       | s in mm       | / inches      |
|-------|----------|--------|---------------------------|---------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| То    | select   | the no | ominal size (D            | N), please use            | e the flow    | v capacit     | y charts      | on the fo     | llowing p     | oages.        |               |               |               |               |
|       |          | DN     | 25<br>1"                  | 32<br>1 ¼"                | 40<br>1 ½"    | 50<br>2"      | 65<br>2 ½"    | 80<br>3"      | 100<br>4"     | 125<br>5"     | 150<br>6"     | 200<br>8"     | 250<br>10"    | 300<br>12"    |
| ъ.    | IIA      | а      | 304/315* /<br>11.97/12.4* | 304/315* /<br>11.97/12.4* | 320/<br>12.60 | 325/<br>12.80 | 370/<br>14.57 | 375/<br>14.76 | 380/<br>14.96 | 481/<br>18.94 | 487/<br>19.17 | 510/<br>20.08 | 540/<br>21.26 | 560/<br>22.05 |
| Expl. | IIB3     | а      | 304/<br>11.97             | 304/<br>11.97             | 357/<br>14.06 | 361/<br>14.21 | 408/<br>16.06 | 412/<br>16.22 | 428/<br>16.85 | 493/<br>19.41 | 499/<br>19.65 | 522/<br>20.55 | 552/<br>21.73 | 572/<br>22.52 |
|       |          | b      | 29/<br>1.14               | 29/<br>1.14               | 29/<br>1.14   | 29/<br>1.14   | 38/<br>1.50   | 38/<br>1.50   | 39/<br>1.53   | 65/<br>2.56   | 65/<br>2.56   | 55/<br>2.17   | 58/<br>2.28   | 60/<br>2.36   |
|       |          | с      | 185/<br>7.28              | 185/<br>7.28              | 210/<br>8.27  | 210/<br>8.27  | 250/<br>9.84  | 250/<br>9.84  | 275/<br>10.83 | 385/<br>15.16 | 385/<br>15.16 | 450/<br>17.72 | 500/<br>19.69 | 575/<br>22.64 |
|       |          |        | 400/                      | 400/                      | 410/          | 410/          | 440/          | 440/          | 460/          | 520/          | 520/          | 540/          | 570/          | 600/          |

\* for IIA-P2.0

d

15.75

| Table 2: Selection of the explosion group |                     |                 |                                 |  |  |  |  |  |  |
|-------------------------------------------|---------------------|-----------------|---------------------------------|--|--|--|--|--|--|
| MESG                                      | Expl. Gr. (IEC/CEN) | Gas Group (NEC) |                                 |  |  |  |  |  |  |
| > 0,90 mm                                 | IIA                 | D               | Special approvals upon request. |  |  |  |  |  |  |
| ≥ 0,65 mm                                 | IIB3                | С               |                                 |  |  |  |  |  |  |

17.32

17.32

| Та    | Table 3: Selection of max. operating pressure |                  |               |               |               |               |               |               |               |               |               |               |               |               |
|-------|-----------------------------------------------|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|       |                                               | DN               | 25<br>1"      | 32<br>1 ¼"    | 40<br>1 ½"    | 50<br>2"      | 65<br>2 ½"    | 80<br>3"      | 100<br>4"     | 125<br>5"     | 150<br>6"     | 200<br>8"     | 250<br>10"    | 300<br>12"    |
| Ū.    | IIA                                           | P <sub>max</sub> | 2.0 /<br>29.0 | 2.0 /<br>29.0 | 1.2 /<br>17.4 |
| Expl. | IIB3                                          | P <sub>max</sub> | 1.1 /<br>15.9 | 1.1 /<br>15.9 | 1.2 /<br>17.4 |

P<sub>max</sub> = maximum allowable operating pressure in bar / psi (absolute); higher operating pressure upon request.

| Table 4: Specification of | of max. operatin | g temperature       |                |                                                    |  |
|---------------------------|------------------|---------------------|----------------|----------------------------------------------------|--|
| ≤ 60°C / 140°F            | Tmaximum allow   | wable operating tem | perature in °C |                                                    |  |
| -                         | Classification   |                     |                | Higher operating temperatures upon request.        |  |
|                           |                  |                     |                |                                                    |  |
| Table 5: Material select  | ion for housing  |                     |                |                                                    |  |
| Design                    | В                | С                   | D              |                                                    |  |
| Housing                   | Steel            | Stainless Steel     | Hastelloy      | The housing is also available in carbon steel with |  |
| Gasket                    | PTFE             | PTFE                | PTFE           | an ECTFE coating.                                  |  |
| Flame arrester unit       | A, C             | С                   | D              |                                                    |  |

Special materials upon request.

| Table 6: Material combinations of the flame arrester unit |                 |                 |           |  |  |  |  |
|-----------------------------------------------------------|-----------------|-----------------|-----------|--|--|--|--|
| Design                                                    | А               | С               | D         |  |  |  |  |
| FLAMEFILTER <sup>®</sup> casing                           | Steel           | Stainless Steel | Hastelloy |  |  |  |  |
| FLAMEFILTER® *                                            | Stainless Steel | Stainless Steel | Hastelloy |  |  |  |  |
| Spacer                                                    | Stainless Steel | Stainless Steel | Hastelloy |  |  |  |  |

15.75

16.14

16.14

\*The FLAMEFILTER<sup>®</sup> is also available in Tantalum, Inconel, Copper, etc., when the listed housing and casing materials are used.

Special materials upon request.

#### Table 7: Flange connection type

EN 1092-1; Form B1

ASME B16.5 CL 150 R.F.

Other types upon request.

20.47

20.47

21.26

22.44

18.11



for safety and environment

23.62

## **Eccentric In-Line Detonation Flame Arrester**



**Flow Capacity Charts** 

## **PROTEGO® DA-E**





The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow V in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."



#### with shut-off valve,

for stable detonations and deflagrations in a straight through design, uni-directional

## PROTEGO® DR/SV



#### **Function and Description**

The PROTEGO® DR/SV flame arrester series ideally combines the function of a detonation arrester with the advantages of a shut-off valve. In case of ignition, the fire can be stabilized within the flame arrester when the flammable gas continues to flow. Inside the detonation arrester, is a valve (1) that closes in case of fire, stops the additional supply of fuel and extinguishes the flames. Temperature sensors in combination with an emergency switch off do not have to be installed if the type PROTEGO® DR/SV device is used. This device is particularly useful for the sucction-side protection of compressors and pumps.

The flame arrester protects against deflagrations and stable detonations. It can be installed anywhere in the pipe independently from the distance of the potential ignition source.

Once a detonation enters the flame arrester, energy is absorbed from the detonation shock wave by the central plate disc (2) before the flame is extinguished in the narrow gaps of the two FLAMEFILTER<sup>®</sup> discs (3). This device can be used for fluids of explosion group IIA (NEC group D).

The in-line detonation flame arresters are unidirectional and equipped with a threaded connection. The thread can be executed to international standards. The standard design can be used up to an operating temperature of  $+60^{\circ}C / 140^{\circ}F$  and an (absolute) operating pressure up to 1.1 bar / 15,9 psi.

Type-approved according to ATEX Directive and EN 12874 as well as other international standards.

#### **Special Features and Advantages**

- · protects against stabilized burning
- · no expensive emergency switch-offs are required
- · temperature monitoring is not necessary
- minimum number of FLAMEFILTER<sup>®</sup> discs
- easy to maintain
- the individual FLAMEFILTER<sup>®</sup> discs can be quickly removed and installed
- the FLAMEFILTER® discs can be individually replaced
- provides protection from deflagrations and stable detonations
- ideal protective system for vacuum pumps
- cost efficient spare parts

| Table 1: Dimensions                                                                       |                                           |                      | Dimensions in mm / inches        |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|----------------------------------|--|--|--|--|--|--|
| To select the nominal size (DN), please use the flow capacity chart on the following page |                                           |                      |                                  |  |  |  |  |  |  |
| DN                                                                                        | G ½"                                      | G ¾"                 |                                  |  |  |  |  |  |  |
| а                                                                                         | 115 / 4.53                                | 115 / 4.53           |                                  |  |  |  |  |  |  |
| b                                                                                         | 100 / 3.94                                | 100 / 3.94           |                                  |  |  |  |  |  |  |
|                                                                                           |                                           |                      |                                  |  |  |  |  |  |  |
| Table 2: Selection of                                                                     | Table 2: Selection of the explosion group |                      |                                  |  |  |  |  |  |  |
| MESG                                                                                      | Expl. Gr. (IEC/CEN)                       | Gas Group (NEC)      | Special approvals upon request   |  |  |  |  |  |  |
| > 0,90 mm                                                                                 | IIA                                       | D                    | opecial approvais upon request.  |  |  |  |  |  |  |
| > 0,90 mm                                                                                 | IIA                                       | Gas Group (NEC)<br>D | - Special approvals upon request |  |  |  |  |  |  |

| Table 3: Selection of max. operating pressure |            |            |                                                               |  |  |  |  |
|-----------------------------------------------|------------|------------|---------------------------------------------------------------|--|--|--|--|
| DN                                            | G ½"       | G ¾"       | P <sub>max</sub> = maximum allowable operating pressure in    |  |  |  |  |
| P <sub>max</sub>                              | 1.1 / 15.9 | 1.1 / 15.9 | bar / psi (absolute), higher operating pressure upon request. |  |  |  |  |

| Table 4: Specification of max. operating temperature |                                                |                                             |  |  |  |  |  |
|------------------------------------------------------|------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| ≤ 60°C / 140°F                                       | Tmaximum allowable operating temperature in °C | Higher exercting temperatures upon request  |  |  |  |  |  |
| -                                                    | Classification                                 | Higher operating temperatures upon request. |  |  |  |  |  |

| Table 5: Material selection | for housing |                 |                                 |
|-----------------------------|-------------|-----------------|---------------------------------|
| Design                      | А           | В               |                                 |
| Housing                     | Brass       | Stainless Steel | Special materials upon request  |
| Gasket                      | PTFE        | PTFE            | Special materials upon request. |
| Flame arrester unit         | А           | A, B            |                                 |

| Table 6: Material combinations of the flame arrester unit |                 |                 |                                                                       |  |  |  |
|-----------------------------------------------------------|-----------------|-----------------|-----------------------------------------------------------------------|--|--|--|
| Design                                                    | А               | В               |                                                                       |  |  |  |
| FLAMEFILTER® *                                            | Stainless Steel | Stainless Steel | *The FLAMEFILTER <sup>®</sup> is also available in Tantalum. Inconel. |  |  |  |
| Spacer                                                    | Stainless Steel | Stainless Steel | Copper, etc., when the listed housing and casing materials            |  |  |  |
| Support for FLAMEFILTER®                                  | Brass           | Stainless Steel | are used.                                                             |  |  |  |
| Washer                                                    | Brass           | Stainless Steel |                                                                       |  |  |  |

| Table 7: Type of connection |     |                                     |
|-----------------------------|-----|-------------------------------------|
| Pipe thread DIN ISO 228-1   | DIN | Other types of thread upon request. |

## **Flow Capacity Chart**



The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."

PROTEGO for safety and environment



for stable detonations and deflagrations in a straight through design, bi-directional

**PROTEGO® DA-G** 



Connection to the protected side (only for type DA-G-T-...)

#### **Function and Description**

The PROTEGO<sup>®</sup> DA-G series is a compact in-line detonation flame arrester for installation in pipes with diameters up to 2"and is used, for example, in industrial applications such as gas analysis lines.

Once a detonation enters the flame arrester, energy is absorbed from the shock wave, and the flame is extinguished in the narrow gaps of the FLAMEFILTER<sup>®</sup> (1).

The PROTEGO<sup>®</sup> flame arrester unit consists of several FLAMEFILTER<sup>®</sup> discs firmly held in a housing. The gap size and number of FLAMEFILTER<sup>®</sup> discs are determined by the operating data and parameters of the mixture flowing in the line (explosion group, pressure, temperature).

To provide an optimum result between the housing size, number of FLAMEFILTER<sup>®</sup> discs and their gap size, a device was developed that can be used for all explosion groups - IIA, IIB3 and IIC (NEC Group D, C MESG  $\geq$  0.65 mm and B). The standard design can be used with an operating temperature of up to +60°C / 140°F and an absolute operating pressure up to 1.1 bar / 15.9 psi. Devices with special approvals for higher pressures (see table 4) and higher temperatures are available upon request. The device is bi-directional and equipped with a threaded connection. This can be adapted to international standards. The detonation arrester can be used at any location in the pipe, regardless of the location of the ignition source.

Type-approved in accordance with the current ATEX Directive and EN ISO 16852, as well as other international standards.

#### **Special Features and Advantages**

- bi-directional
- modular design
- quick removal and installation of the individual  $\mathsf{FLAMEFILTER}^{\circledast}$
- easy maintenance and replacement of the individual  $\mathsf{FLAMEFILTER}^{\circledast}$
- · Various uses possible
- Installation of temperature sensors for G  $1 \sl_2$  and G 2 possible
- · cost-effective spare parts

#### **Design Types and Specifications**

There are three different designs available:

| Basic design of the DA-G in-line detonation flame arrester, size $\frac{1}{2}$ to 2" | DA-G- – |
|--------------------------------------------------------------------------------------|---------|
| In-line detonation flame arrester with                                               | DA-G-T  |
| integrated temperature sensor* as                                                    |         |
| additional protection against short                                                  |         |

additional protection against short burning from one side, size 1½" to 2"

In-line detonation flame arrester with two integrated temperature sensors\* as additional protection against short-time burning from both sides, size  $1\frac{1}{2}$ " to 2"

\*Resistance thermometer for device group II, category (1) 2 (GII cat. (1) 2)

Flange connection available upon request.



DA-G- TB

| Table 1: Dimensions                                                                         | ;          |            |            | Dimensions in mm / inches, SW = width across flats |             |             |  |
|---------------------------------------------------------------------------------------------|------------|------------|------------|----------------------------------------------------|-------------|-------------|--|
| To select the nominal size (DN), please use the flow capacity charts on the following page: |            |            |            |                                                    |             |             |  |
| DN                                                                                          | G ½        | G ¾        | G 1        | G 1 ¼                                              | G 1 ½       | G 2         |  |
| а                                                                                           | 80 / 3.15  | 80 / 3.15  | 100 / 3.94 | 100 / 3.94                                         | 155 / 6.10  | 155 / 6.10  |  |
| b                                                                                           | 55 / 2.17  | 55 / 2.17  | 76 / 2.99  | 76 / 2.99                                          | 124 / 4.88  | 124 / 4.88  |  |
| c (IIA)                                                                                     | 112 / 4.41 | 112 / 4.41 | 122 / 4.80 | 122 / 4.80                                         | 205 / 8.07  | 205 / 8.07  |  |
| c (IIB3 and IIC)                                                                            | 135 / 5.31 | 135 / 5.31 | 145 / 5.71 | 145 / 5.71                                         | 205 / 8.07  | 205 / 8.07  |  |
| d                                                                                           | —          | —          | —          | —                                                  | 400 / 15.75 | 400 / 15.75 |  |
| SW                                                                                          | 32 / 1.26  | 32 / 1.26  | 50 / 1.97  | 50 / 1.97                                          | 75 / 2.95   | 75 / 2.95   |  |

| Table 2: Selection of the e | explosion group     |                 |                                   |
|-----------------------------|---------------------|-----------------|-----------------------------------|
| MESG                        | Expl. Gr. (IEC/CEN) | Gas Group (NEC) |                                   |
| > 0,90 mm                   | IIA                 | D               | Special approvals upon request    |
| ≥ 0,65 mm                   | IIB3                | С               | - Special approvais upon request. |
| < 0,50 mm                   | IIC                 | В               |                                   |

| Tabl  | e 3: Select | tion of n        | nax. opera | ting press | sure     |          |          |          |                                         |
|-------|-------------|------------------|------------|------------|----------|----------|----------|----------|-----------------------------------------|
|       |             | DN               | G 1⁄2      | G ¾        | G 1      | G 1 ¼    | G 1 ½    | G 2      |                                         |
| Ъ.    | IIA         | P <sub>max</sub> | 1.2/17.4   | 1.2/17.4   | 1.1/15.9 | 1.1/15.9 | 1.1/15.9 | 1.1/15.9 | $P_{max} = maximum allowable operating$ |
| рI. ( | IIB3        | P <sub>max</sub> | 1.1/15.9   | 1.1/15.9   | 1.1/15.9 | 1.1/15.9 | 1.4/20.3 | 1.4/20.3 | operating pressure upon request         |
| Щ     | IIC         | P <sub>max</sub> | 1.1/15.9   | 1.1/15.9   | 1.1/15.9 | 1.1/15.9 | 1.6/23.2 | 1.6/23.2 | operating pressure upon request.        |

| Table 4: Specification of max. operating temperature |                                                |                                             |  |  |  |
|------------------------------------------------------|------------------------------------------------|---------------------------------------------|--|--|--|
| ≤ 60°C / 140°F                                       | Tmaximum allowable operating temperature in °C | Higher operating temperatures upon request  |  |  |  |
| -                                                    | Classification                                 | Figher operating temperatures upon request. |  |  |  |

| Table 5: Material selecti | on              |           |                                                              |
|---------------------------|-----------------|-----------|--------------------------------------------------------------|
| Design                    | В               | С         |                                                              |
| Housing                   | Stainless Steel | Hastelloy | *The FLAMEFILTER <sup>®</sup> is also available in Tantalum, |
| Gasket                    | PTFE            | PTFE      | materials are used.                                          |
| FLAMEFILTER®*             | Stainless Steel | Hastelloy |                                                              |

Special materials upon request.

| Table 6: Type of connection |     |                                     |
|-----------------------------|-----|-------------------------------------|
| Pipe thread DIN ISO 228-1   | DIN | Other types of thread upon request. |





Flow Capacity Charts

PROTEGO® DA-G



The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m<sup>3</sup>/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."

#### **Flow Capacity Chart**

PROTEGO® DA-G





